2812 CPL

Final Report

Senior Design 482

Client/Advisor: Professor Alexander Stoytchev
Team 14 - Hardware Implementation of 1281 Processor

Team Members:

Daryl Damman Team Lead

Logan Lee Scheduling

Grant Nordling Parts Manager

Braxton Rokos Routing Lead

Gavin Tersteeg Technical & Project Assembly Lead

Website: hifps:)//sdmay24-14.sd.ece.lastate.edu/

https://sdmay24-14.sd.ece.iastate.edu/

izglE Page |1

Table of Contents

T T TOTUCTION e 7
T P O B e 7
1.2 Infended Users and USAOB. ... e 8
1.3 Previous Work and CONSIABIATIONS ... 10

2 DB SIM oo, 11
2T ENGINEEIING STaNTAITS. ..o 11
2 2 R OUIT BB S e 11
2.3 SBCUMNTY CONMCBINIS ..o e, 13
2.4 DeSIgN HBIaTIONS L. 15

3 Implementation Details. 57
B DBSIGN oo 57
3.2 FUNCHIONAITY oo 58

4 BrO@ABT CONMTEXT oo 61

D TS IO oo, 62
DT P LSS e 62
D 2 RS S, e 68

B CONMTIUSION oo 75
.1 P OO N SS oo 75
5.2 PrO BTt ValUB o 75
6.3 FUTUIE CONSIABRIATIONS .ot 76

7 Appendix A — Operation ManUal. ... 77

8 Appendix B — Design HeratiOnS. e 95

9 Appendix C— Other ConsiderationS ..o e 98

10 Appendix D — Software and Hardware RESOUICES ..o 106

2|Page iZElE’

Table of Figures

Figure 1-1281 CPU WeD SIMUIBTON ..o, 8
Figure 2 - 1281 CPU SIMUIator DBSION «oo oo 15
Figure 3 - Register Block from SImuUIator. ... 16
Figure 4 - Register Block from SImMUIGTOr ... 17
Figure 5 - Register File Trom SIMUIGTO ..o 17
FIGUIE 6 = B-DIT LT IMUX ..o e 17
Figure 7 - ALU Subcomponents DIGOram. ..o 18
Figure 8 - ALU Arithmetic Mode Table ... 18
Figure 9 - ALU SHhITter DeSION .. oo 19
Figure 10 - ALU Addition/Subtraction Design With FIags......co.oooooooiioioiieeee 19
Figure 11 - Program CoUNTer DeSIGN ..o 20
Figure 12 - Data Memary diagram fram the sSimulator..........coe 2l
Figure 13 - Control LOGIC BIOCKS ..o, 22
Figure 14 - OpCode DeCOder LOGICovv oo 22
Figure 15 - Control Lines Table e 23
Figure 16 - Code Memory SCREMatiC e 24
Figure 17 - Register File SCRemMatiC. ... 25
Figure 18 - ALU Ports Labeled on Diagram .o 25
Figure 19 - Inifial Schematic Design of ALU 8-BIiT SNITTer ... °b
Figure 20 - Inifial Schematic Design of 8-Bit Addition/Subtraction Component Schematic .. 26
Figure 21 - ALU Flag Registers and Output MUX SCRemMatiC ..o 27
Figure 22 - Program Counter SCReMaTiC ... e 28
Figure 23 - Confrol table sChemMatiC ... 28
Figure 24 - Video Card SCReMIatIC. ..o 29
Figure 25 - Video Card Breadboard Implementation. ... 30
Figure 26 - ALU Subcomponents Final SCRemMatiC. ... 31
Figure 27 - Output Flags 0n SCRBMATIC oo 31
Figure 28 - Adder Circuit Zoomed in 0N Last FEW BITS. . 32
Figure 29 - Implementation of the ALU on Breadboards..............o 33
Figure 30 - Writeback Module SChematiC. ... 33
Figure 31 - Writeback Module Breadboard Implementation ... 34
Figure 32 - Code Memaory PCB Schematic (RBV A)..o oo, 35
Figure 33 - Code Memory PCB Madel (RBV A) ..o, 36
Figure 34 - Register File PCB (RBV A) oo, 38

Figure 35 - Register File PCB Schematic (REV A) ..o 39

iZElE’ Page |3

FIGUre 36 = ALU NOR LOGIC. ..o 40
Figure 37 - ALUNOR PCB SCReMATIC ..o 40
Figure 38 - ALU PCB SCRBMIATIC ..o 47
FIgUre 39 - ALU NGOR PUB ... oo 42
FIGUIE 40 - ALU PUB oo e 43
Figure 41 - Program Counter PCB Schematic (ReV A) e 44
Figure 42 - Program Counter PCB Implementation (Rev A) ... 44
Figure 43 - Control Table PCB (REV A) ..o, 45
Figure 44 - Data Memory + Video Card PCB (REV A) ..o 46
Figure 45 - Power CIrCUITs ErrOrs RBV AL e 47
Figure 46 - Main Board PCB Schematic (ReV B) ..o 48
Figure 47 - Main Board PCB Implementation (Rev B).........o e 48
Figure 48 - Code Memory PCB Change 1., 49
Figure 49 - Code Memory PCB CRange 2 ..o, 49
Figure 50 - Code Memory PCB Schemafic (ReV B) ..o, 49
Figure 51 - Register File PCB Schematic (ReV B) ..., 50
Figure 52 - Register File PCB Model (ReV B) ... 51
Figure 53 - Program Counter Error from ReV A 52
Figure 54 - Program Countfer PCB Schematic (ReV B) ..o 52
Figure 55 - Video Card & Data Memory PCB Schematic (Rev B) oo 53
Figure 56 - Video Card & Dafa Memary PCB Implementation (Rev B) ..., 54
Figure 57 - Inline capacitor fTor MainbOoard ..., 55
Figure 58 - Missing wire connections in ALU NOR schematic ..., 55
FIQUIE 59 - TeSTING RIG . oo e 63
Figure 60 - User Panel DeSIgN ..o e 64
Figure 671 - 8-Bif 2-1 MUMIPIEXEr DBSIGN ..o, 69
Figure 62 - Program COUNTEr DBSIGN ..o 70
Figure 63 - Testing Rig Connected fo tThe RAM and ROM ... 70
Figure 64 - Partially constructed PCB machine to test electrical characteristics ... 72
Figure 65 - Usage of the monitor program fo examine portions of memory 73
Figure 66 - Snippet from ALU Unit 1851 Drogram .o 74
Figure 67 - Modules Labeled oni281e CPU .. 78
Figure 68 - Mainboard PCB without Mast COMPONENTS ... 79
Figure 69 - MouUNtIiNg HArQWare ..o, 80
Figure 70 - USer Panel DeSION ..o 82

Figure 77 = Front Panel PUB e e 82

4lPage 1281F

| I |
Figure 72 - 10 Ports 0f the 12818 CPU ..o 85
Figure 73 - BO Physical MUX PINOUT ..o 85
Figure 74 - B1-B14 BreakoUT PINS. oo 86
Figure 75 - Pin Layout for both i281e CPU and Bread Board Headers ..., 86
Figure 76 - Breakout Pins Data Paths Visualized ... 88
Figure 77 - Power and Control Line OUutpuUT HEAAEIS ..o 88
Figure 78 - Bread Board 10 PCB ImMplementation ... 89
Figure 79 - Dip Package with and WithouT CRIDS ..o 97
Figure 80 - Different Types of Solder JOINTS .. e 92
Figure 81 - Expansion Bus and EXPansion POWEeT ... 93

Figure 82 - Mega I/0 EXpansion ModUIB ... 93

izglE Page |5

Table of Tables

Table 1- Acronym Definition LIST .o 6
Table 2 - i281e CPU Member List WIth MajOrs ..o 7
Table 3 - Former i281 Web Simulator project members ... 7
Table 4 - Former 1281 CPU Hardware Implementation members ..., 8
Table 5 - Comparison Between Ben Eater's CPUand the 1281 CPU ... 10
Table 6 - Functional RegquUIremM BNt S . e 12
Table 7 - QUalitative RegUITEMIBNTS e 13
Table 8 - Quantitative ReQUITEMEBNTS ..o e, 13
Table 9 - Design CONSTIaINTS e 13
Table 10 - Switch Types and AppHCatiONS .o 66
Table 11 - Hours toward i281e project for second SemMester..........o 75
Table 12 - CloCK FreQUeBNCIBS ... e, 84

Table 13 - Breakout PiNs EXPlaiNed ... 87

6|Page

Table of Acronyms

Acronym Name
ALU Arithmetic Logic Unit
BB Breadboard
BIOS Basic Input/Output System
BOM Bill of Materials
CMEM Code Memaory
CPRE Computer Engineering
CPU Central Pracessing Unit
DIP Dual Inline Package
EE Electrical Engineering
DMEM Dafta Memary
EEPROM Electrically Erasable Programable Read-0Only Memory
EPROM Erasable Programable Read-Only Memory
ETG Electronics and Technology Group
FPGA Field Programmable Gate Array
FR Functional Requirements
GND Ground
HC High-Speed CMOS
HCT High-Speed CMOS with Transistor-Transistor Logic Voltages
IC Integrated Circuits
IEEE Institute of Electrical and Electronics Engineers
LED Light Emitting Diode
LS Low-Power Schottky
LSB Least Significant Bit
MSB Most Significant Bit
MUX Multiplexer
PC Program Counter
PCB Printed Circuit Board
PWB Printed Wiring Board
QR Quantitative Requirements
HAM Random Access Memory
ROM Read-Only Memory
SR Qualitative/Subjective Requirements
Y7% Switch
TTL Transistor-Transistor Logic

Table 1- Acronym Definition List

i281e Page |7

1 Introduction

The i281e CPU team is composed of three electrical engineering and fwo software
engineering students (see Table 2). Throughout the last fwo semesters, we have
accumulated a wealth of knowledge and skills from designing and developing a finished
iI281e CPU profofype. This document marks the design journey and the final details of the
project as ouflined by the requirements of the Senior Design 492 class.

Primary Degree Member Name

Electrical Engineering | Logan Lee

Braxtaon Rokos

Grant Nordling

Software Engineering | Gavin Tersteeg

Daryl Damman

Table 2 - 1281e CPU Member List with Majors

1.1 Historical Context

In 2018, Dr. Alexander Stoytchev and Kyung-Tae J. Kim began development on a MIPS-
based, single cycle processor that could be faught in CPR E 281 (now CPR E 2810). By
Summer 2019, a finished implementation of the processor was developed for the Altera
DE2-115 FPGA boards. Curriculum was written for the following Fall semester. During the
Fall 2019 semester, the 281 CPU was unveiled fo the class o show the culmination of the
skills learned throughout the semester.

In Fall 2020, Dr. Stoytchev submitted a project proposal for Senior Design fo develop a web
simulation of the 1281 CPU. This simulator would make interacfing with the processor
significantly easier, especially if Altera boards were inaccessible or otherwise occupied by
ofther students. A group of six sfudents were formed info sdmay21-38 to develop the web

simulator (see Table 3 and Figure 1).

Primary Degree Member Name

Computer Engineering | Aiman Priester

Eric Marcanio

Bryce Snell

Brady Kolosik

Jacob Beftsworth

Software Engineering | Colby McKinley

Table 3 - Former 1281 Web Simulator project members

8|Page izglE

Current Instruction: i281 CPU Running: BubbleSort

00 ©0D0O0CO0O0DOD 0000O0O0O0OQ

Speed:50

Auto Mode on Show Description

Game Mode on Show Bus Width

Register View Esyntax Highlighting
Mstart PC @ 32 Edshow Data Path
EStop At End EShow Cantrol Path

w)le
Regsiers
T
T

Instruction Memory [Il ¥

Figure 1-i281CPU Web Simulator

The i281 CPU is still taught in CPR E 2810 classes fto this day; however, it has a far grander
potential waiting to be possessed. Was it possible fo simply produce the i281 CPU info a
physical device? In Spring 2022, another Senior Design feam (sddec22-20) was formed. An
effort was made fo take the original design of the i281 CPU and produce a physical device.

The goal was to make a breadboard version first to ensure logic was correct and sound.

Primary Degree Member Name

Software Engineering | Saffron Edwards

Electrical Engineering | Joseph De Jong

Alex Kiefer

Patrick O'Brien

Computer Engineering | David Vachlon

Table 4 - Former i281 CPU Hardware Implementation members

Unfortunately, fime was not an ally with the previous feam and while a breadboard
implementation was finished by December 2022, it had some fundamental flaws that

hindered it from going further.

1.2 Problem

The overarching goal for the project, as declared by the project name, is fo provide a physical
hardware implementation of the i281 processor without the use of an Altera board, and
further, any FPGA-based platform. This implementation will make use of concepts from our

classes about electronics circuit design, digifal logic, and PCB design.

izglE Page |9

Our primary vision for this project is to be used as an extended feaching tool for CPR E 2810
to represent the operations of the processor befter both physically and visually. As seen
with the Alfera board, infernal regisfters and calculations weren’t visible for students fo view
and the online simulator is pure software lacking a physical device fo tactilely interact upon.
Students would benefit greatly from a more detfailed examination of the infernal workings of

the processor.

Alongside being a teaching fool for CPR E 2810, the final objective would be to infroduce the
final product as the primary processor for junior and senior students in CPR E 4810. This
would expand upaon the processor design and allow students to fully explore madifying

architectures and developing applications/peripherals for processors in a simplified manner.

1.1 Intended Users and Usage

There are three groups that would be considered infended users:

e Dr. Alexander Stoytchev and CPR E 2810/4810 teaching staff
e Sophomore studentsin CPR E 2810

e Junior and senior students in CPRE 4810

1.1.1 Teaching Staff

The project must be accessible to feaching staff for both CPR E 2810 and 4810 through both
design choices and documentatfion. A comprehensive archive of source files regarding
schematics, PCB designs, CAD wark, custom soffware, and documentation far using all

aforementioned components must be made available.

1.1.2 CPR E 2810 Students

It Is assumed that the earliest stfudents of CPR E 2810 will be sophomaores with minimal
background fo digital logic. As such, the design of the i281e CPU must be accessible. This
means the product must be thoroughly labeled and step-by-step guides be written. The
students will interact with the product as if it were an Altera board but have far more

flexibility in inferaction methods.

1.1.3 CPR E 4810 Students

It is assumed these students have already taken both CPR E 2810 and 3810. These students
will have a deeper understanding of both digital logic and microprocessor design. While the
product must be thoroughly labeled to aid with debugging for these students, the primary
focus would be to extend the architecture and peripherals of the current design. Advanced
documentation must be accessible for the students fo learn finer details about how the

expansion bus works, file system design, and fo change the insfrucfion set.

—

10|Page izglE

[|

These students are also expected o be capable of replacing components and inferfacing
their own solutions into the design. Breadboard and PCB solutions must be compatible with

each ofher.

1.2 Previous Work and Considerations

As mentfioned in the subsection regarding Design Complexity, a homebrew computing kit

exists on the market fo build 8-bit retro computers through Ben Eater’s 8-bit Computer kit'.

Table 5 provides a non-comprehensive side-by-side comparison between Ben Eafer’s

computer kit and the i281e CPU design as developed by our team.

Ben Eafer’s 8-bit Computer 1281 CPU

Comprehensive build kif, costs $315 Chips must be purchased and sourced

individually. Will cost over $315

A full walkthrough of how the CPU works The FPGA and simulator created for the

and performs shown in a video on Ben CPRE 281 class with lecture slides on how
Eater's channel. the CPU works.
Uses 7415 series chips. Uses 74HCT series chips.

Has hidden fees for equipment not included | Equipment is provided by ETG and lowa

in the kit. Ex. Oscilloscope, Multimeter, efc. State University.

Table 5 - Comparison Between Ben Eater's CPU and the i281 CPU

As nofed in the historical context, a previous feam attempted fo implement the 1281 CPU in
hardware once befaore; however, were unable fo do so. Our goal is fo leverage insights and
challenges found from the previous feam info our design considerations and development.
Our fimeline also encompasses the second phase of the project, focusing on designing and
producing PCBs using KiCad. While the previous feam were unable fo design PCBs before
the end of the project, our feam has been able fo successfully develop multiple iteraftions of
PCBs to showcase the computer's processes, serving as an educational fool that is robust

and less prone to mechanical failure.

To learn from the previous feam's experience, our approach involves caftegarizafion, general
organizafion, and careful consideration of the infricacies that the previous team found
challenging. To maintain canstructive feedback, Dr. Stoytchev provided remarks on what
worked and didn't work in the last project, offering valuable insights without denigratfing the
efforfs of the previous feam. The prior project faced challenges, resulting in a non-functional

breadboard computer due fo design inconsistencies and insufficient circuif care.

" https)//eater.net/8hit/kits (accessed Dec. 03, 2023).

https://eater.net/8bit/kits

izglE Page |1

2 Design
2.1 Engineering Standards

The i281e CPU does not adhere to many modern-day standards and practices as the
tfechnology used for the project is rooted in the early days of electronic computing. The
standards chosen for this project are described by the Institute of Electrical and Electronics
Engineers (IEEE) to help us consider design choices and improve development.

o |EEE162-1963
o |EEE162-1963 describes the standard definitions and terms for digital computers.
As the project is infended to be educational, using the appropriate tferminology for
digital computing and related components is paramount for a comprehensive
curriculum.e
e |EEE 370-2020
o |EEE 370-2020 describes a standard for predicting electrical characteristics on
printed circuit boards and other related interconnects at frequencies up to 50 GHz.
This is relevant fo our project because we will need to handle signals running at
up fo 1 MHz on our printed circuit boards for the final product ?
e |EEE 2716-2022
o |EEE 2716-2022 provides a guide for characterizing the effectiveness of printed
circuit board level shielding. In our project, we will have a dozen or so PCBs all
connected with discrefe cables. We will need to take shielding into account, so we
don’'t encountfer noise-related problems.*
e |EEE 696-1983
o |EEE 696-1983 describes a computer bus architecture for 8-bitf computers running
at TTL logic levels. Knowledge of how to avoid signal noise, arbitrate device
access, and disfribute power o all subsystems will come into use for our own

project.®

¢'"|EEE Standard Definitions of Terms for Electronic Digital Computers," in ANSI/IEEE Std 162-1963
vol, no., pp.0_1-, 1963, doi: 10.1109/IEEESTD.1963.120147.

3"IEEE Standard for Electrical Characterization of Printed Circuit Board and Related Interconnects at
Frequencies up to 50 GHz," in IEEE 5td 370-2020, vol, no, pp.1-147, 8 Jan. 2021, dai:
10.M09/IEEESTD.2021.9316329.

“"|EEE Guide for the Characterization of the Effectiveness of Printed Circuit Board Level Shielding," in
IEEE Std 2716-2022, vol, no., pp.1-46, 29 May 2023, doi: 10.1109/IEEESTD.2023.10136540.

5"|EEE Standard 696 Interface Devices," in ANSI/IEEE Std 696-1983, vol, no., pp.1-40, 13 June 1983,
doi: 10.1109/IEEESTD.1983.81971.

12|Page izglE

2.2 Requirements

Requirements are split into three caftegoaries: funcfional and non-functional, where
gualitative (subjective) and quantitative requirements fall under non-funcfional. These are
denoted as functional requirements (FRs), qualitative requirements (SRs), and quanfitative

requirements (QRs).

Alongside the design requirements, there were a few design constraints from the original

design parameters.

2.2.1 Functional

Reqg. # Requirement Description

FR-1 | CPU clock must permit stepping through instructions and operating af a
specific range of frequencies

FR-2 | CPU must allow writing custom programs via interface panel

FR-3 | CPU must allow loading example programs from the Boot Hard Disk

FR-4 | CPU must be capable of playing a version of the i281 PONG example program

FR-5 | Instruction decoding must handle active high and low signals

FR-6 | All internal storage and calculations must be visualized through LEDs

FR-7 | CPU boofing must appear instanfaneous fo students

FR-8 | CPU execution must allow for single-instruction or continuous execution

FR-9 | CPU must allow loading example programs from ROM

FR-10 | EEPROMs must be used for the contral line logic

Table 6 - Functional Requirements

2.2.2 Non-functional

2221 Qualitative/Subjective Requirements
Reqg. # Requirement Descripfion

SR-1 | Data bus cables must be clearly labeled

SR-2 | Data bus cables must have the zeroth bit on the right-hand side

SR-3 | EEPROMs must be either the same chip or hot-swappable

SR-4 | RAM chips must be either the same chip or hot-swappable

SR-5 | Visualization for the current address (program counter) must be one color

SR-6 | The project must be aesthefically pleasing and attractive
SR-7 | CPU must be explainable to CPR E 281 students
SR-8 | CPU must be capable of being modular

SR-9 | Anyimplementation (breadboard or PCB) must be interchangeable

SR-10 | CPU must be readable from one viewing direction

SR-11 | CPU must be fully labeled
SR-12 | CPU design must be as close as possible to the original Verilog design

izglE Page |13

SR-13 | Bus enfry and exif need to be clearly labeled with direction and connection

fype
SR-14 | LEDs and related visualizers must be colar-coded

SR-15 | Singular direction (northern indicator) must be standardized and rigorously
followed for all CPU components and visualizers
SR-16 | A standard cable and LED color code must be used to distinguish

Table 7 - Qualitative Requirements

2222 Quantitative Requirements
Reqg. # Requirement Description

OR-1 | RAM must hold af least 64 words/instructions

OR-2 | Program addressing must be at least 6 bits

OR-3 | Visualized binary data must be represented in 2's complement by reading the
most significant bit (MSB) on the left o the least significant bit (LSB) on the
right

OR-4 | CPU must achieve TMHz clock speed on PCB implementation

Table 8 - Quantitative Requirements

2.2.3 Design Constraints
The constraints of the original design have been updated to be more descriptive and

representatfive of limitations of both the breadboard and PCB implementations.

Reqg. # Reqguirement Descripfion

(-7 | Both ROM and RAM must use Big Endian

(-2 | All breadboards and PCBs must be labeled

(-3 | All modules must be consfructed using confinuously obfainable components

(-4 | Modules should be electrically self-contained to show logical separation

C-5 | All instructions must be able fo execute in a single clock cycle.

Table 9 - Design constraints

2.3 Security Concerns

Security is not a concern for this project. While we have made considerations about security,
none were implemented for the sake of project complexity and the lack of requirements.
Security features and further considerations will be a topic in the far future for students
examining the hardware implementation of i281e processor. Additionally, no security

testing was performed on either breadboard or PCB implementations.

As of now, our project's primary focus has been on functionality, performance, and design

opfimization. Security testing, while crucial, was not within the scope of our current

14|Page 1281F

objectives. However, it remains a critical aspect o address in future iterafions or related

projects fo ensure robustness and resilience against poftential vulnerabilities.

2.4 Design Complexity

The i281 processor is more complicated due to the design choices made compared fo modern
processors. It utilizes a variety of TTL-style logic chips to provide a multi-use execution
environment. There are numerous components to the full processor of which most are

presenf on modern processors:

¢ ROMw/BIOS
o Thisrepresents where the processor will begin executing instructions, dictating
start up procedures and beyond.
e User RAM
o Programs are loaded intfo RAM via BIOS startup or program request. These
programs will operate the CPU once the ROM has completed its instruction set.
e Register File
o Handles intermediafe volatile memory o store results from the ALU, Data
Memory, or insfruction immediate values.
e Arithmetic Logic Unit (ALU)
o Performs the basic arithmetic for instructions via data stored in the Register File.
e Program Counter
o 8-bit program counter that only uses the lower 7 bits to indicate where in
insfruction memory the processor is currently executing from.
e Data Memory and Video Card
o Outputsdata from the Data Memaory onfo eight seven-segment displays. Each
segment of each display must be individually togglable to allow more complicated

programs.

Beyond the CPU components, there are also complex tasks of handling items related to the

components.

e [afaBus
o Connects component fo component in a cleaner and easier fo read method.
e Visualizations

o Individually represent signals and individual bifs in registers.

These components do not match or exceed modern solutions. Modern processors are built
on silicon chips through lithographuy, ion doping, electroplating, and efcefera. These

processors can and will perform far befter in all capacities compared fo our project. While we

izglE Page |15

cannof matfch or exceed modern sgolutions, the project frumps complexity of a modern
processor by being built on breadboards using infegrated camponents (ICs) and wiring

rather than being a design on a computer that will be sent fo a manufacturing facility.

2.5 Design Iterations

Several design decisions and milestones were held throughout the product lifespan leading

fo a primary design and an extended version.

The original i281 design showed theoretical promise but required adjustments for practical
implementation. Not all elements from the simulator or FPGA design could be directly
franslated info ICs. Due fo the project's limited fimeframe, we streamlined the design for
efficiency and ease of testing, focusing on chip efficiency. This involved evaluating the
balance between component complexity and functionality, ensuring alignment with project

objecfives, and staying within scope and fimeline constraints.

2.5.1 Design 0 — Original i281 CPU Design
2511 Design Visual and Description
L_‘ b — [O i O

€ € €5 € &5 Cs € Cg Co Cyo 8y €12 €5 €4 a5 Cis 17 Cus
AR RN RRRRRE! b0 0000000 00000000
00000000000000O00O00
e Je
Registers
A 2005000}

Instruction Memory [#][#]

Data Memory

Figure 2 - i281 CPU Simulator Design

The 1281 CPU design simulator is depicted above. This design encompasses Design O as if
was given fo us by the client. This includes a BIOS, Code Memory, Program Counter, Opcode
Decoder, Confral Table, Data Memory, Video Card, Register Files, Arithmefic Logic Unit, Input
Switches, and Flag Register Files.

16|Page iZElE

2512 BIOS

In the original design, a “loader program” (or BIOS as it is called) was provided o allow users
fo enter programs info RAM through the interface panel switches (SW15-SW0) depending on
swiftch selection at boot. Alternatfively, an example program would be stored in the second

half of code memory and the BIOS would jump fo the active program segment.

2513 Code Memory
Code memory was a 16-bit memaory storage solution that contained up-to 128 insfructions
which were separafed in half. The upper half is dedicated fo a BIOS and the lower half fo the

actively used program memory that could be modified while execution was occurring.

2514 Register file

The register is responsible for holding data for usage by the ALU. In @ modern computer, this
is like the code memory component; fast memory for storing the data the computer is
acfively using. The block of this design can be seen in the fwo figures below. The register
fakes many inputs tfo perform ifs purpose. The datfa line, 8 bits, feeds info the register file
from a mux, allowing the locafion to come from the code memory, ALU, or data memory. The
register file also has seven dedicated confrol lines: the write location, write enable, read

select one, and read select fwo.

Since the data line is sent to all four register files, the write enables and location is used fo
only update the correct register file: A, B, C, or D, when desired. A decoder with enable was
used fo send the write enable line to the corresponding register file. There are fwo read-
select addresses with fwo bits each, allowing the register to oufput fwo different or the same

registers on the fwo ouftput buses.

T elle fe

Registers
CQLCS
A A
B
p
D
0) e £
A C611C7
¢ [rsmmord] [
8
B X
@ \
D b

Figure 3 - Register Block from Simulator

iZElE’ Page |17

VWI Write Enabl
elect rie Enable
Cxl lcq [Cm

Po
Cy

Registers

A]
) o)
S o)
) o)

rt0|Read Select
Cs

Read Select

Input

Figure 4 - Register Block from Simulator

Each of the register files is made of the schematic seen below. These use a D flip-flop with a
mux to ensure the bitf is stared until written to use the write enable. Each register file has the

same schematic with different write enable and outputf bus locations.

A; As As Ay A; Az Ay Ao
Write ‘

Enable] [
DQ- DQ

-
-
—

-

DQ-DQ

P Q P Q P Q > Q P Q P Q > Q P Q

| | |

IN, INg INs IN, INg IN, IN; IN,

ﬁ
\"2f
o
o

—
==/
-]
=]

r
\EESE
o
=

=
"
=]
=

Clock

Figure 5 - Register File from Simulator

Cy4 'cs

B,..B, —&—
C7...CO 68—
D, ...D, —¥—

Caw»

Figure 6 - 8-bit 4-1 Mux

An 8-bit 4-1 mux manages the oufput of each two-ouftput bus. These are made using 8 4-1

mux with the small selection wires.

2515 Arithmetic Logic Unit

For Design O of the Arithmetic Logic Unit (ALU), we were given an initial design that was used to
create both the simulator and the FPGA design. As we can see from the image below, the ALU
confains a few subcircuits: the 8-bit shifter, 8-bit adder, a few mulfiplexers, and a flag calculator.
For our design, we will also be adding the flag registers as part of the ALU design which is just a

4-bit register file. The design employs three canfrol signals. Two of the contral signals are Iabeled

18|Page iZElE

ALU_SELECTO and ALU_SELECTTin the picfure and they determine the output of the ALU (the
second picture shows the different combinations that lead to different opcodes). The third one is
to control the flag register. This design will output one 8-bit bus (ALU_RESULT in the picture) and
one 4-hit bus (the flag register outputs). The flag register outputs the carry, negative, overflow,
and zero flag.

ALU_SELECT1
ALU_SELECTO
TR
s | 8-bit shifter | s
shift out
8
0 .
—‘ =1 ALU_RESULT
. “add / sub
8-bit adder] e Carry
1
; camy 1
overflow ——
1
= overflow
)

Figure 7 - ALU Subcomponents Diagram

ALU_SELECT1 | ALU_SELECTO |Operation
0 0 SHIFTL
0 1 SHIFTR
1 0 ADD
1 1 SUB/CMP

Figure 8 - ALU Arithmetic Mode Table

The 8-bit shifter circuit is capable of shiffing a bit either left or right. The ALU SELECTO
confrol signal defermines which it goes to. If ALU SELECTO equals a logic low, then the
circuit shiffs left and vice versa. The design itself can be seen below. This circuit shows the
logic that shifts it both left and right depending on the select signal. This circuit has one exira
oufput called Shiff_Out which goes info a multiplexer in the higher up circuif. It works as a
carry flag when the ALU SELECT1 confrol line is at a logic low.

iZElE Page |19

Shift_Out

Figure 9 - ALU Shifter Design

The 8-bit adder/subtractor circuit is capable of both adding and subtracting two 8-bit
numbers. When the ALU SELECTO control line is at a logic low, the circuit is in addition mode.
When it is at a logic high, then it is in subtraction mode. This circuit is essentially eight full
adders tied together in a line. This circuit also outputfs a carry bit and a negative bit. All the
output bits labeled So;can be put info an 8-bit NOR fo determine if the value is zero. If it is, it
friggers the zero flag. Lastly, the C;and Cs carry bits can be puf info an XOR fo show if the

circuit has overflowed, meaning the result was too large to fit in the number of bits provided.

add / sub

by
]
A

s

negative

QD— overflow

carry

Figure 10 - ALU Addition/Subtraction Design with Flags

2516 Program Counter
The program countfer design has four main components. The first being a 6-Bit adder with

one side fied fo 6 bifs from the Code Memory and the other side having the first bit

c0|Page iZElE’

hardwired as one. The Ci, bif is tied fo ground. In the second adder, the left side of it fakes the
output of the first adder and the right side takes the lowest & bits from the Code Memory
output. The Ci, input is also grounded. Next, the first adder’s output is multiplexed fogether
with the second adder's output. The first one is sef to output of the MUX once the confrol
signal, C;, is sef fo zero. The second adder’s output moves through the MUX when C; is sef to
a one. The outputf of the MUX is then thrown into an 8-bif register file where the data is
stored. This register is connected to both the clock and Cs. The output of the register file then

goes back into the first adder’s left side and the cycle begins again.

Clack

6 6
6-bit adder
s

Figure 11 - Program Counter Design

2517 Data Memory
The data memory section is a location fo store infermediate information not immediately

needed in computfatfion. In addifion to the 4 bytes of memory that can be stored in the
register file, the data memory module offers space to store 128 bytes. The information in
dafta memory must be loaded info a register before it can be used in other operafions. The
confrol signals associated with data memory are Cis, Ciz, and Cia. Cig confrols what signal is
used as an inputf fo the data memory module. Gy enables writing fo the data memory

module. Gg allows the output of the data memory module to be refurned to the register file.

iZElE’ Page |21

| e
(2]
=i

0000 00000111
@—1 0001 00000011
0010 0000001
0011 0000000
C 0100 0000011
0101 00000100
0110 00000101

0111 00001000
_—C1C 1000 0000011
1001 0000000

1010 00000000
1011 0000000
1100 0000000
1101 00000000
1110 0000000
1111 00000000

=)

—

=

[

=1

=1 | I=}

=1

HEEIEH A

Data Memory

Figure 12 - Data Memory diagram from the simulator

2518 Video Card
The video card allows for the results of computatfions fo be displayed fo the user. It does this

by displaying the lower 8 bytes of data memory on 7-segment displays. The format of the
oufput depends on if the user has the “Game Mode” opfion selected on the front panel. If so,
each bit in a byte will correspond to a single segment of the 7-segment display. Otherwise,

the lower 4-bits are converfed info hexadecimal and displayed.

To be practically implementable in hardware, the video card does not directly display the
confents of data memory. Instead, it acts as a memory mapped I/0 device that responds fo
the first 8 bytes of memory. When a write memory occurs in one of those addresses, the
information is stored both in the video card and the data memory module. Due o this design

decision, the video card will only update the contents of a cell when a write operation occurs.

2519 Control

The control lines throughout the computer are defined by the control logic seen in the picture
below. There are two main sections fo the initial design of the 1281, the decoder and the
confrol logic fable. The decoder takes the 16-bif instruction line as an input and oufputs logic
for which operafion is going fo be completed by the CPU. The confrol box sets the

corresponding confrol lines, for an operafion, that are disfributed o the rest of the CPU.

22|Page iZElE

] OpCode [=— Control

Decoder € € €3 €4 Cs5 G €7 Cx Co €10 €1y €12 €13 €14 €15 €16 €17 Cos

ERERRRRRRERRR RN

00000000000 000DO0DO0DO0D0O

Figure 13 - Control Logic Blocks

The OpCode decoder, shown below, ensures that only one operation is active af a time. It
also shows the breakdown of each bit of the instruction line and how it is used in the
decoder. The most significant four bits are always used to define the operafion, as seen with
the 4-to-16 decoder. In 0-16 decoder. In addifion, bits 9 and 8 are sometimes used fo decode

the operation as seen in the three decoders fo the right.

Y% |— Noop
1 —En
K En % y, |— INPUTC
%2 b—MovE ¢ % |— NpUTCF
Y3 |— LOADI/LOADP w & J2 [INPUTD
Y4 |— ADD — w :’% Y3 |— INPUTDF
% |—nappI =
[=]
L Y |—suB
& | swr En T y |— SHIFTL
3 ? » |— sHIFTR
g % [—rLoaD ® -
% % | — LoADF g
w; Y10 — STORE —l g
w, 7' [— STOREF
T En % y, |—BRE/BRZ
M3 — cup % Ji |— BRNE/BRNZ
Yoo sl sump & y
Tis W g 2 —BRG
° —1 vy ‘é_ Y3 |—BRGE
a
Iis | Ina | Ing | Inz | I | Ip | Ig Is | I; | Is Is I, I3 | Iz I, Io
| SR | S— v J
L 8 ADDR/VAL/OFFSET
2 Ry
2 Rrx

Figure 14 - OpCode Decoder Logic

The 23 operatfions bits and bifs 11,10, 9, and 8 are passed from the Opcode Decoder to the
confrol box to set each control line. The values of each control line is shown in the figure
below for each operafion taking place. The way this implantation works in design O Is using

gates fo make a Boolean funcfion.

1281

IMEM WRITE ENABLE

PROGRAM COUNTER MUX

REGISTERS_ PORTO_SELECT1

REGISTERS_PORTO_SELECTQ

REGISTERS_PORT1_SELECT1

REGISTERS_PORT1_SELECTO

REGISTERS_WRITE_SELECT1

REGISTERS_WRITE_SELECTO

REGISTERS_WRITE_ENABLE

ALU SOURCE MUX

ALU SELECT1

ALU SELECTO

FLAGS WRITE ENABLE

ALU RESUT MUX

DMEM INPUT MUX

DMEM WRITE ENABLE

REG WRITEBACK MUX

NOOP

INPUTC

[

[

INPUTCF

[

[

INPUTD

[

INPUTDF

=

[

LOADI/LOADP

Y1

Y0

ADDI

SUB

Y1

Y0

SUBI

NG

R

LOADF

Y1

YO

MGG

-

STORE

X1

X0

STOREF

Y1

YO0

X1

X0

SHIFTL

X1

X0

[

SHIFTR

X1

X0

X1

X0

Y1

YO

BRE/BRZ

Bl

BRNE/BRNZ

B2

Rlr(R| R R R R = e == e == =] =] = |~ | PROGRAM COUNTER WRITE ENABLE

B4

2.5.2 Design 1 — Minimum Viable Processor

Figure 15 - Control Lines Table

Page |23

Leading Iinto designing a physical hardware implementation, several changes needed o be

made to the original design. Additionally, we developed a few standards for the project.

These standards will not be discussed in full here and instead can be viewed in Appendix C

(Standards).

2521 BIOS

The BIOS, which is stored and runs from the ROM, will serve the funcfion of clearing memory

and sefting up the RAM chips for the user before running the main program. The BIOS will

need to run faster than the main code, as the length of BIOS’ execution would make waiting

for it foo long for a normal user. The BIOS then must decide which program to fill the RAM

with, determined from the user’s input. Affer filling RAM and Data memory, the CPU will be

read for the program to run.

2522 Code Memory

To avoid issues with needing to modify or load a program in the same chip as the BIOS, a
ROM and RAM chip will be distinguished. In addition to containing ROM and RAM, which

holds the BIOS, Code Memory handles all interactions with program loading and execufion.

Instructions for running the user's program will be stored and executed from the RAM. This

—

24|Page 1281e

[|

will be filled in with the necessary insfructions during boot. Either the RAM will be filled
from a storage chip on the device storing sample programs or filled using the switches
manually (via BIOS loader).

The size of both ROM and RAM has been extended compared fo the FPGA design. Since the
code memory will not be implemented as a massive register file, the independent ROM and

RAM chips will allow storage far beyond the processor’s general capabilities.

ke dll s s s
b |- | | |- | |

Figure 16 - Code Memaory Schematic

2523 Register Files

The register file will be implemented using four 8-bit register chips that will be multiplexed
between two different sets of 4-1 multiplexer chips. Additional LEDs will be included
between registers and output to visualize what is stored and what has been produced as an

aufput.

iZElE Page |25

Figure 17 - Register File Schematic

2524 Arithmetic Logic Unit
The ALU

ALU_SELECT1
ALU_SELECTO
A T/R
8 8-bit shifter

flag |— negative

calculator |— yerg

C
shift out
: E
o 8 8
—l - y ALU_RESULT
g add / sub

= ’

1
I

8-bit adder
B] carry
overflow
1’
= overflow
|

Figure 18 - ALU Ports Labeled on Diagram

Design 1 of the ALU includes the first design of the ALU using 74 series chips and LEDs. The first
image shown below is of the 8-bit shifter circuit. It uses three SN74HCT257N chips which are
each four 2-input multiplexers. The first two on the left in the picture take the input from Port A.
The third multiplexer is where we defermine where the shift out bit is determined. The output of
this circuit is Port C. We also have three filter capacitors fo filter out noise.

°6|lPag

D

1A
—t AL
e <1071 {)
M vl 2 (4]
SNIAHCT257H o
—2fu] 5
4w € 5.
» e P -
1 ALUSELECT 2 e 7.8
A
V wpr
mlu
H S H
i s <2/
»
A2 1 +5¢
Ml ol
[| "
s ENTAHCTSTH
— L g AL w]
A0 1 . »
g i sFLOuT 1 o
n
- oD 2
2
GND = &7
AlD.71 5
50 . I
“
U2 “
H SNTAHCT25TH o H2x H
o b
N 8 x 3
P .
. wlace]
Y —s
|2 s A
N s £ - oo anp
YT by
3 wla s i
N
u
- a =3 o
[EE - g o1 ot Vo ur
o 3 I—“—e, L"—e,
i GND GHD GND
GNo GHD
o sdmay26-14 P
Sheet: /
File: 1281_alu.kicad_seh
e: - r
Size: A | Date: 2023-10-31 I A
XiCed EDA Wicad (6.0.11) Tia: 1/1
1 T z T ¥ L]

Figure 19 - Initial Schematic Design of ALU 8-Bit Shifter

The Adder/Subtractor circuit design is created using three CD74HCT86E four 2-input XOR chips
and two CD74HCT283E 4-bit Full Adder chips. This circuit inputs the ALU_SELECTO confral line

along with Paort A and B. From this circuit we output Port D, an overflow bif, and a carry bit. The

logicis the same as it was in Design O, just with chips instead of conceptual design. We also have
5 filter capacitors ftied fo both +5V and GND fo filter out noise.

3

ut

we s 3

. o Y a consenaese
w5] | o oo
{ [S0 2IG.T1 »
prm (TR Py - —8 fo
—im 2
w3l P T
— B2 1 ‘ A 1 st} 2
_S_H 10 2
= a3 1z .
oy T3 s 7 S ST sl w2
15
4 " Y I ST
1
w0
ao.m1 2
» o
Sy - -
i E
o e o0 us
N comcisse
A L I
—_— s ¥ 3 oveRiLoN 1
¥
50
81071 {24 ar—fx
J:A ALU_SELECTO —3tn
e o Uz " .
CoracIZBIE 5
s Mla B o Ifx
COTMCTBEE & s 5
1 H P
B . & - o €
- Freaen saf1xme ahp
g ot "
" 10
84 . a7l s 1-
a 3|
i3 | 1 u
i
i e B : an
a0 i
an
@ a o o
VoL W gs 01w o ur = o1 wF
e = simogzi-ts
o P w0 s oo Sheet: /
ol Flle: 1261_B-bit_adder_alu.kicad_sch
Title: 1281 8-Bit Adder/
Size: b [Dt 2023-10-31 [Rec A
WiCsd EDA Wiead (6.041) [/1
I I ’; ¥ T % T 3 T

Figure 20 - Initial Schematic Design of 8-Bit Addition/Subtraction Component Schematic

i281E Page |27

The last schematic includes the 8-bit 2-tfo-1 multiplexers (created out of fwo SN74HCT257N
chips) that Port C and D feed info and outputf Port E. Port E is also visualized with eight LEDs
accompanied by eight 3300 resistors. Port E is also inputted info C04078BE 8-bit NOR chip.
The output of the NOR is wired into the CD74HCT377E register file for the flags. We also
have another SN74HCT257N 4-bit 2-to-1 multiplexer circuit that takes the shift bit from the
shifter, the carry bif from the adder, and the overflow bif from the adder. The oufput of the
mulfiplexer goes straight info the register file for the flags. Lastly, the last bif in the Port E
bus is also tied to the flag register as the negaftive flag. All the flags are visualized using four
LEDs accompanied by four 3300 resistors. The flag register ouftput is labeled Port F. This
design includes five filter capacitors to reduce noise. Nofice the order of the flags on Port F

as this will be changed in Design 2.

T
a
1 ALSELECT
£10.71
e
2 .
o /| ut
o] L
Sa 0 o [T ¥ LT
g [T b . T b
-— 5 Q. = - n
Ty rare e
o 4 v f2EL
2ul, e,
02 0] 7T
Y - B
o ul. I 2 ETY
b T
2 I ’ e Vv L)
= Pl .
30 e ki H =
5
Pt
2 i f
Tios
o
N [Y .
£lo.
Vv
;ui
SursncrzsT
Jo —i_SHILOUT 7 Y
18 T camey =
B D40788E
P 02 g *
16 4Dy ru Bi
e | [
. P g)
= N
b . ;.—m—;
] - N7 12 |, e |
- 2 —8 ne
P B ne
=

oo
ol e
£ 41w

CocK
a1 I

e

e T T Lo T
1 1 3 1 1
A 4

puthisx_and_flag.reglaters ALU.ticad_sch
Flag Registers and Output NUX

[Date: 2023-11-03 [Rew &
wicad (6.011) [ie: /1

T T 7 T ¥ T

Figure 21- ALU Flag Registers and Output MUX Schematic

2525 Program Counter

The program countfer was expanded to 8-bifs instead of the original 6-bifs as seen in the
1281 simulator. A major factor in these changes is the limited physical parts sold; the adder
and mux chips are 4 bifs each. This allows us fo expand to 8-bifs without changing our
design and no real downside. Another benefit of increasing the bit size of the program
counter is we gef more space to store and run programs from 26, 64 to 2”8, 256 lines. The

design greatly benefits from this change without making big sacrifices elsewhere.

28|Page izglE

Figure 22 - Program Counter Schematic

2526 Control Iable

The confrol logic was changed to use EPROM fo convert between the current operafion and
the confrol lines. The schematic for the design can be seen below. This simplifies the number
of components in the design well, giving the same functionality. The EPROM is

programmable, allowing the ability fo update the confrol logic later.

Since the CPU displays each control line's state af two locations, where it is generated and
used, we are using a buffer chip. Each chip should only drive one LED, so this buffer is

required fo ensure proper voltage levels in the confrol lines.

Figure 23 - Control table schematic

iZElE Page |29

2527 Video Card
The Video Card was designed fo look the same as the simulator and have two different

functions: normal and game maode. There are not foo many differences befween the two
functions, but game mode enables an extra bit and configures the EEPROM slightly
differently. We used one 8-bitf register file for each seven-segment display so the clock could
moderate the output and the displays wouldn’'t change foo quickly. We also added two 1000
connected in parallel with the common cathode of the display and ground. This allowed us to
achieve a total resistance of 500). We had issues with resistance values higher than this as
with every segment of the display that furns on, the brightness dims. The value of 500
allowed us to not burn out the displays and get the most brightness on them. This issue was
corrected for the PCB design. This design also includes a 27C256 EEPROM that takes inpuf
from the data memory and converts that data info lefters, numbers, and symbols and
oufputs the data fo the register files. The Video Card also uses a 3-to-8 Decoder fo activate
the enable pin of each of the eight registers. This function allows each register to acceptf the
data from the EEPROM at the proper fime. Lastly, there is a 8-bit NOR chip that enables and
disables the decoder depending on input from the DMEM. The picture below shows the
schematic for the design. The picture below shows the physical implementation of it on the
breadboards. This design was affached directly fo the DMEM, so they acfed as a single
island in the breadboard design.

'_"1 ‘_b: —l: '_“_J, '—«E L 34“: '—"n—r—o“—v Lli "—l»‘—L

Figure 24 - Video Card Schematic

30|Page izglE

=8 00
i S

Figure 25 - Video Card Breadboard Implementation

2.5.3 Design 2 — Improved Breadboard

Cerfain components were iterated upon in this second design.

2531 Code Memory
A visualization panel was added in extension to the component to showcase the current

instruction and program address. This module is known as the “Debug Module” and attaches
directly tfo the Code Memory module. In addition to displaying the current insfruction, the
module can interface with the front panel to provide debugging facilities to the user. It
accomplishes this by overriding the CMEM instruction output with hardcoded instructions.

This hardware was used to implement the “Examine” and “"Deposit” front panel functions.

2532 Arithmetic Lagic Unit
The image below Is the Design 2 iteration of the ALU schematic. It is the combination of all

three of the schematics seen in Design 1. There are two major changes to the schematic. The
first one is the order of the output flags. The second is we made an error in calculating the
overflow bif, so we added an extra 4-bit Adder chip (CD74HCT283E). In addition to the fwo
changes, the ALU has been built on breadboards and works as expected. Anofther smaller
change to the schematic was that the control signals are now names the same as they will

be called from the contral table.

i281E Page |31

Figure 26 - ALU Subcomponents Final Schematic

The oufput flags were rearranged to matfch the same layout as the simulator version of the
1281 CPU current supports. Bit O is now designated as the zero flag. Bit 1is now designated
as the negafive flag. Bif 2 did not change and is still the averflow flag. Bit 3 is now

designated as the carry flag.

J8
FO 1 ZF
F1 2 NF
F2 3 OF
FS &4 CF

Figure 27 - Output Flags on Schematic

In Design 1, the mistake we made for the overflow bit was we assumed that S;was the bit
that would go into the XOR to create the overflow bit. This was incorrect as Cyis not S, Cr1s
also a bit infernal fo CD74HCT283E. There are multiple ways fo imitate that bit. We had the
whole design already built on the breadboards and there wasn't much space fo implement a
large multi-chip solution. Instead, we realized we could use another adder chip, except this
one would take the same inputs as the second adder chip from Design 1. The only difference
Is that we want fo preserve the C; so that it will output as the new Cg or Cour 0N the chip. In

order fo do this, we just needed fo use one of X7 ar Y7 as a logic high and the ofher as a logic

32|Page iZElE

low. This allows that carry bit to flow through. We are unsure if it Is the most power efficient

method of implementation, but for the functionality, it works.

Yz X7 Ys Xg Y5 X5 Yy X

TR

S; S Ss S,

,—_)D— overflow

Figure 28 - Adder Circuit Zoomed in on Last Few Bits

The image below is the breadboard version of the design. Visually, we can see that there are
a lot of wires going all over the place. This design has so many components and it was very
difficult fo layout. From the image, we can see Port A, B, E, and F. We can also see the flags,

confrol lines, and ALU oufput. The LEDs have the smallest bit on the right and greatest bit on
the left.

izzlE Page |33

(sf(gF/}NFJZF =

Figure 29 - Implementation of the ALU on Breadboards

2533 Writeback Module
An addifional module was added to efficiently write fo RAM with the programs inputted from

data memory. This slot in between the bus that carries the swifches to the code memory and
adds additional function with the help of a control signal C3.

5(0.15)
010,151
10,71
Ky K Nooos®
RO b0 us uk 02
330 D™ Gno Taezs i —il.
3
Rt DL e o T e D2l § ozt _H_\ 04 &
330 oW GNo / e I o N
R2 02 €5 5 {0 |2 013 [T P |2 08 &
330 (0 GNo / e e _I.ILi_g
n R 03 €6 140, 2e a2 014 [+ 2 U PP 2|2z o0 kh 1
—i 50/ — O —P—D &
- o 30 oW Gno L/ e Y e L [ThFH
52/ ™ o RO D €1 11 0g 2|0 015 e 11 pg el o Noit1s
5 s /] 7415377 o~ Ct] ALL_10] 139 IR
5 330 D™ GNo N
756 /] /EU—L o Y qof2 B by L&) iis ils
T8 57 /] LLe b Jp > g5 L4 S WA of % of Z
o i s 330 LED GND g -
—’—9-’5! A 03 a3 [t] W
LS 13] py a2] . GND GND
—11 510/ P12 15] e s~ 350 LD GNO v €2
Ti3 512/ 17106 a6 [L6C8 R7 L oD N 01 uf
13/ 07 o748 C t
2 330 0 Gno
—‘LEL’E 515 ax ubee s DB 8 ono
T 3 o ' +5V 5V
Eo¥ 330 U w2 RN
745257 7415257 e
TN N epvay Y o4 pro 2 [0 v 70t 00 Ed
GND b s s
A3 e 1 o
PLS 5 7 05 Pl 5 7 01
106 2 106 Y @
c3 S5 6 lup TN iy *5 o wr
PLE 16|00 ze|az_ o8 PL2 4])pc 202 1‘_”_‘,7
£100.7] L1 A2 13 oo
P71y 3 07 PL3 11) 03
0e 24 Iod Zd
/Lu_ e JLENETE i v of‘y,
H i
s s
e o £ o £ B
K g
01 uF GND

GND i GND i
GHD

Figure 30 - Writeback Module Schematic

—

34|Page 1281e

[|

The control signal used, C3, is active low in this usage. When C3 is logic high the writeback
module is in the normal operations and outputs the switches fo the code memory. When (3
Is active or logic low the input from port one of the registers is saved in a register, saving the
high eight bits of the instruction and getfs ready fo outputf the entire instruction line loaded
from data memory to the code memory. Since the input bus from the register file is only
eight bifs, the instruction line has to be splif info two parts. The high eight bifs are saved in a
register, and the lower eight bits are passed from the input bus.

This allows for compact flash modules in the data memory to be utilized to save programs fo
be loaded info the RAM chips. The write back module still allows for the switches to be used
in their original functionally as well. An user can input programs manually and us
instructions codes that expect user input.

g rrrE R

prmogen
- =+
“n
e
W .
e |
we fu
.
-8
-
« |w
.
"=
=2
\ -
"
-
"
(
5
.
8
©
]
s
M
wn
.
"
.
.
e "
= .
ey
n "
"
"
o ==
[*
b -
= we
L .
< -
= .
b .
L] - .
L
L L
= H s
moo®@>

| Dy = B
- - Lt | B G
ZNs ~ wol ot el - -
e o e we 1
\il D O v
60 £ 2 15 1
e oww aae wafle W foafhos | o
N - o « s wex foufesa =
\ =] "
N —
e waw (= am g R +
= L = - . . suufl e e s
a5 | o 1
[E - - R L O A A = A
pw LR R) o LS Doy o P B
Ly LR R RN R N rn c
v w0 W)
- w0 = 3

. e
AMmAARsRETRE AN IR

Figure 31 - Writeback Module Breadboard Implementation

2.5.4 Design 3 — PCB Revision A

2541 Mainboard

On the breadboard protofype, the individual modules were inferconnected using a large
amount of ribbon cables. Based on the application requirements, and personal experiences
using building the profotype, we decided that using ribbon cables was not practical for the

PCB machine. After several design meetings, we decided to condense all the ribbon cable

izglE Page |35

inferconnects onfo a single PCB. Each module connects on fop of the mainboard PCB using

2.54 mm pin headers, and buses are routed on the PCB itself.

To comply with our original design requirements, we added breakout connectors on the
botfom middle of the mainboard PCB. This allowed for existing PCB modules to be removed
and be replaced with breadboard versions. With this feature, students would be able to
make new versions of the PCBs on breadboards, and then connect them fo the rest of the

system using these breakout connections.

2542 Code Memory

To prepare Code Memory for the PCB implementation, the existing Code Memory module
from Design 1 was combined with the Writeback module from Design 2. This was done to
simplify the amount of board needed to produce. These modules are also heavily connected
in functionality. Overall, this reduced the number of integrated circuits needed fo create the

processor by fwo.

It was decided that ZIF (Zero Insertion Force) sockets would be used for the BIOS ROM chips.
This was done fo allow stfudents to change the programming of the BIOS easier without

risking damage or mechanical wear to the code memory IC sockets.

Minor changes were made fo the schematic after combining the two modules. The power
bus was included in the schematic, as well as giving each input and oufput bus a pin header
fo connect fo the main board. The schematic is shown in Figure 32 and the PCB model is

shown in Figure 33.

Figure 32 - Code Memory PCB Schematic (Rev A)

1281k

36|Page

Low Bits [0..7)

High Bits [8..

=
o
E
o
=

2TS242m

goococoo0000000

WOY

00000000000000

2TSo4iem

Q0000000000000

sauno) weibouy

nEgeeeceeee

" BP0 00000 /

, SNg uogINISY|

PYHCTE257
mEsoTOOOD

nNesacsass

c7
v

8-Bit
2-1 MUX

HME225LLP-70

a
a
a
«
a
a
a
a
a
a
a
a
a
o

neacaaanaas
o TUHCT257
moooTooo

(

a -
Al

SSAIPPY UM
:meecee00

NnNaGAGARAAARAS NGaGAAAGARAS

o hh2LDHhe
ST EOTPOPPTPOPODYD SSmODODODOTUOED

Tevol sug-mon1 ~[st78] sug WbiH

HME2256LP-70

C—
64

EFLIVLL]

MeSAaSaaae
[

o hh2lDHhe . v t52LloHhe

4

THHCT377
15

~ ¥ 15"

en

|

a2

NMNeasoacsaaae
s S POOODODD
MneasSaaae

Writeback High Bits
3

v
c9
us

|

hOLDOHHKL

z
&

~N
moooOoOO®

sayoyms nduy) T 1od ayid saysi6ay

B R CEE G

o s o LLELDHKL
= moooeoooEED

S meooOEOO
neaacaaaan
o £52LDHhL

SfmeeoTEoEoO®
necaaaaaand

LS52LlOHhe
ssoTEOD
YYYYYE)
LS52LOHKL
el LI X LN
meaaeaee |\ _/“neacsacsaaas

16-Bit 2-1- MUX

o
o

O

Figure 33 - Code Memory PCB Model (Rev A)

iZElE’ Page |37

2543 Register file

The circuitry of the register file was not changed significantly from the profotype module to
the PCB implementation. Unlike other modules, the register file was not combined with any
other module and remained as implemented in the original design. Due fo space constraints,
the physical layout of the register file was changed from a haorizontal layout on the
breadboard machine o a vertical layout. This allowed the register file fo have a smaller
footprint while maintaining all the existing visualization LEDs.

38|Page

. Author: Daryl Damman

L

Register File

W

]9

J
]

oeeeeeeA:
Register File Input
Caaccaal
| ?4HCT139
[A& N N R NN RV

o
(1]
(2]
o
(-8
m
-

@ C, cCNo =
[©ICs cmmmoz| [
(&}

4
HN
[=] o

Ce G
WRT_SELECT

£
(5]

0
o

]
]

CSaccSSsaal
[?uHCTesa
‘- N0 X B KR |
{?HHCTESB

oy
o

(i

P4HCT3?7 RegiSter A
ueeeeeueﬁo\ I [=

PHHCT3??

Treamresecs

TR

PUHCT377 RegiSter C

Cc3 Cc2 Cci co

s

PUHCT377 RegiSter D

(R B N -2 N R R)
_ﬂﬂﬂﬂﬂﬂﬁ.]
| 7uncTas3
(R -3 -N 3 N N .
{?HHCTesa
J4HCT253
(- E-N-N-8-R-R-1|
[?HHCTesa
(-0 3-N-N-N-J
_Gﬂﬂﬂﬂﬂﬂﬂ
[?HHCTESB'
- BB R- XK1
[?uHCTasa
(-R-N-N-3_H_-N-R.-J

|

Re GHNNEO > IO = (N

OP7 OP6 OP5 0P OP3 0P2 OP1 OPO

PORTA_SELECT

re GRS » ClNo [—— Port 1

M o~ - o)] © ~
o~ I} N N -t - -
=) f=) =) =) =) a =)

iP7 4P6 1P5 1P4 1P3 1P2 1P1 1PO

.:O@@@@@@@Porti Portooeeeeeem"ao

Figure 34 - Register File PCB (Rev A)

iZElE Page |39

toly Ty Py Ty

o o, o T

e, e e e

i,

Figure 35 - Register File PCB Schematic (Rev A)

2544 Arithmetic Logic Unit
In this iteration of the ALU, we splif it up info two different boards. Both were to be used in

the same slot on the mainboard. For the first version had the legacy funcfions as the
previgus iterations where it confained four arithmeftic functions: shiff left, shiff right,
addition, and subfraction. The second version of the design deemed ALU NOR removed the
shift left function and added a NOR function. Figure 36 shows fthis updated version. This
change required two additional chips (Figure 37). Figure 38 shows the schematic of the
original ALU, but slightly edited for the PCB implementation. Those chances were we moved

added a 4-bit inpuf pin and consolidated the contral line into one 3-bif input pins.

40|1Page —_

ALU Logic (Updated)

ALU_SELECT_1
ALU SELECT.O
B i L ? Flag [— Negative
L Calculator (— Zero
8 NoR 8 R
A *—F 7 8
8x 2-Bit 8 8-Bit 2 a g
8) i ’
5 NOR -+ Shifter v ALU_RESULT
7 — 1
Shift Gut [~
o :
B ADD/SUB Carry
Y 1
7
8-Bit 8:
B‘ Adder ‘ . C
B = [4 Carry fm—
Ouerflou | —_E ¢ Dverflow
1

Figure 36 - ALU NOR Logic

Figure 37 - ALU NOR PCB Schematic

i281e Page |4

Figure 38 - ALU PCB Schematic

From the schematic, we were able fo create the PCB layouts. In order fo make both the ALU

and ALU NOR versions easy fo identify, they have the exact same layout except for the two

—

42|Page 1281e

[|

NOR Chips U12 & U13 and their accompanying capacitors. On the ALU version, it just has that
section empty. Figure 39 shows the ALU NOR PCB and Figure 40 shows the ALU Version.

eoeocoon
00RO 00DO0

WRT_EN
lags Register

{NOR Version)

a
1]
=]
2]
@
=]
=]
o

ceoeoon

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

ALU Output LEDs

cooooooon

—Bit Adder/Subtractor Author: Braxton Rokos

Figure 39 - ALU NOR PCB

Page |43

eceoeo00D

@
<
a
Q
=]
2]
o

o
o
(]
(e]
(e]
Q
(<]
<]

MUX
Flags Calculator
[IE] [}

N-X-X-N-N-N-N

Bit 5 Bit 4 Bit 3 Bit 2

ALU Output LEDs

coocodooon

—Bit Adder/Subtractor Author: Braxton Rokos

Figure 40 - ALU PCB

2545 Program Counter
When adapting the Program counter from breadboard to PCB, not much changed with the

schematic. The power bus was included and the resistors for LEDs were replaced with a
resistor pack tfo reduce footprint. After adding layouts to each part and complefing in routing
of the traces the schematfic from Figure 41 was implemented info the PCB shown in Figure
42,

441 Page izglE

bbb
T

Lk EE EE

2
S)
255595 595 5Ye5 Ye Y

[faesasee pesesaee:

L Adders
M| ?HHCTEEB} y ?HHCTEBH}(W+Q

SmsseosoE®d SEssosEoEED

&

-
e
4

e afory

[7HHCTE283
L€ -

[

R€C D

.6€

- H-N-N-N-N-X-U-|
[?L}HCTEE,EI
(- N-N-N-N- NN
Gﬂﬂ‘uﬂ.ﬁﬁﬁﬂ'
[YHCTESE? %g
GUUU_UUHB
J
?HHCTEE?]
GBBBBEBB'
Program Counter Output
0000060 ea

Adders [(PC+1)+OFFSET] 8-Bit 2-1 MUX

[O)
324
ax 2

o}
©
e
]
e
e
e
e
3

o]

e
s
o

NPC7 NPCeé NPC5 NPC& NPC3 NPC2

O

Program Counter

Figure 42 - Program Counter PCB Implementation (Rev A)

2546 Control Iable
The circuitry behind the contraol table remained essentially unchanged befween the

improved breadboard prototype and the Rev. A PCB implementation. The only major
circuitry change invaolved switching out the individual resistors for resistor networks fo save
space. Like the code memory module, it was decided that ZIF socketed would be used for

each ROM chip, as that is a part that will see frequent inserfion and removal.

iZElE Page |45

@ Author: Grant Nordling)| cccocooco @m Control Table @

N——————————————————————— T 1
3 J 0000000000000 0 b 00000C000RORO0 5 00000000000000
O +5v e

'fo' K
|o] rst
|| a0

0000000000000 0 goooo00000000C0 DO0O00000000000

Lo
sETTTTTe e

Figure 43 - Control Table PCB (Rev A)

For the first revision of the confrol fable, we decided against additional inputs for the
address pins used on the control ROMs. Adding headers for them would have required extra
pull-up circuitry on the contfral fable, as well as requiring extra connecfions and wiring on the
mainboard. Omifting this pafential feature reduced the number of points of failure on the

first revision.

46|1Page
| I |

2547 Video Card & Data Memory
On the PCB version of the data memory module, it was decided that the video card and data

memory sections of the original breadboard prototype would be combined info a single
board. This was done because the fwo modules share several infernal signals that are nof
used anywhere else in the processor. The circuitry for the video card could be piggybacked
off the I/0 signals of the data memory module, therefore reducing the number of fofal

connections fo the mainboard.

o Author: Gavin Tersteeg

. e, e

1

!
Ll

2=
am
LLLLLLLLTLS

3,
[}
|
[
D
v
B
°

no

[©] Cyp WRITEBACKMUX
311
D eme

13 +sv

o »
RST
N

o MIII\IIII

Figure 44 - Data Memory + Video Card PCB (Rev A)

Like the enhanced data memory module from design 2, several essential I/0 devices are
included on the PCB itself. These devices are the UART and data memory bank register.
Circuitry for the compact flash interface also exists on the data memory module, but the
acfual connectors for the device were moved fo the main board PCB due fo space

constfraints.

izglE Page |47

2.5.5 Design 4 — PCB Revision B

In this revision of the i281e CPU, we made changes fo the PCB designs based on our physical
festing. Some of the errors were simple mistakes and easily correctable. These mistakes also

led fo new versions of the PCBs being manufacfured for the final product.

2551 Mainboard
Since the mainboard was rushed at the end of the arder fime, we found errars in this board
that needed to be corrected in revision B. Most of these changes were tested on the Rev A

boards before implemented on the new PCBs.

The power circuit had fwo errors the input barrel jack connector was moved o avoid any
high power solder joints being foo close. The pawer circult itself was cleaned up fo ensure
befter stability in our output current. This part of the circuit is shown in Figure 45 - Power
Circuits Errors Rev A.Figure 45.

(]
Qo
Qo
G
G
G
@

Figure 45 - Power Circuits Errors Rev A.

The reset line was not properly attached to the input reset signal due to names being
different, this was carrect in the schematic. Since the game mode signal was not properly
used in Data Memory this also had o be router fo the new heard. Two of the output buses on
the main board were flipped label wise.

Addiftional chips were added under Data Memory allow with resistor and capacitor fo
improve the flash card’s stability when in use. These addifional parfs can be seen in the
bottom right of Figure.

48| Page izglE

Mounting Holes
. O

o
°

000000
0000
o000

gzgy RINSNINE

Power Input / Regulation

EEERRERE

REERREER T T

Wi

Power Connectors

g T QO

Control Lines

Bus Connectors Physical MUX (PMUX)

€18 MUX

REG

€15 MUX
e EEEEEEY] E

Control Path Signals

Figure 47 - Main Board PCB Implementation (Rev B)

2552 Code Memory
Affer Revision A was produced info a physical PCB, we noticed there were two problems
with the schematic from Rev A. Chip U9, a register, had 5 volfs hooked up fo the ground

connection instead of the ground, Figure 48. Also, C1 was misidentified in the schematic as

1281

an acfive low signal, causing the LED fo be flipped as expected, Figure 49. These changes

were fixed on Rev A boards fo fest functionally and changed in the Rev B version. The

Page |49

updated schematic is shown in Figure 50, and the PCB did not change from Rev A on the
outside.

=

ug
TLLS3T7

vee b

WAD_3 | g Q0
WAL 4 | o) o
WAZ 7 | g [+¥]
WAS B g3 o3
WAL 13 15 0%
_WAS 14 | pg 05
WAB 17 | ne 06

AL L8| 57 a7

CLE_11 bCP
1 [=

EH

E =
[*CMEM_BANK j’
GND

Figure 48 - Code Memory PCB Change 1

co
DB R
5V *CMEM_BANK

[Ep™s 330

C1
R
6ND s y CMEM_WRITE

D3 330

D10 R10 €3 o3
+5v
(oY 330

Figure 49 - Code Memory PCB Change 2

Figure 50 - Code Memory PCB Schematic (Rev B)

50|Page izglE

2553 Register Files

A number of LEDs had errors in them that affected the cosmeftic of Rev A but not the
functionality of the Register File. This error needed fo be fixed, including the contfrol signal
C10 LED was set up to be active low when it needed fo be active high. The fwo confrol
signals, C8 and (9, were flipped, representing the write select address. One of the output
buses, Port 1, had incorrect LED labeling on the lower 6 bits. These were all corrected in the

PCB, as shown in Figure 52.

Figure 51 - Register File PCB Schematic (Rev B)

1281

. Author: Daryl Damman

i281e JMeaaaaaaaad
A .,J F4HCTI??

Register File

000000 eE:

Register File Input

SMeAARAARERD
U TYHCTI??

ETSoSTSSESED

B7

NN N -N-K-N-N-N-)

J PHHCT3??

EssooooRED

TYHCTI??
EccsToEOED

ﬁ:]ﬂﬂﬂﬁﬂﬂﬁﬂﬂﬁ

o
&

1
]

CAASSaal
| 7yHCT253
CTPPEEEOD 'V
[ﬂﬂﬂﬂﬂﬂﬂﬂ

.:@eeeoeoﬁiporti

ister A

|
=
=

€2

—

Gaaaccan

CTTEOTOOO W
L E-N-N-N-X-N-
| 7uHcT253

c12 3

1
]

Figure 52 - Register File PCB Model (Rev B)

2554 Arithmetic Lagic Unit
There were fwo changes that needed to be made to both versions of the ALU. LEDs and

Port 0 eee@@eeﬁﬂo

Page |51

signals for C12 and C13 were switched. The symbol for the XOR chip was inaccurafe and

needed to be fixed. This caused the board to need to be rerouted.

2555 Program Counter

After testing the PCB for the program counter, the PC mux, seen in Figure 53, had the flipped

inputfs. This made it so that the control signal would output the opposite next program

counfer value as expected. This was fixed femporarily in Rev A for festing by adding a chip

fo the back of the board fo invert the control signal for the mux chips.

52| Page izglE

-
u
assy
] N prepyran R
ro—
o T R
Crm—
] 1| 2o |2 NP2
Fam—r
o SETH PR -1
(T
s
[
L
o0
-
ue
{ S
e N rearey 5w
oy ¥ °
B ' PR
LIS P
I ST 2e Jazwecs]
i
2 ul, o wec2/
o i
P —als
e [nur- H

4
¢

o 6 o
¥ o1 N orw

Yt b

Figure 53 - Program Counter Error from Rev A

The Program counter was fixed for a Rev B by swapping the inputfs to U5 and U6. This new

revision’s schematic is shown in Figure 54, the PCB itself only had infernal wiring changes.

s
- -
- +
1 d u w
eorencroase corencramne
- ¥ . . ¥ s m
SR 3 P |
1Ly : 3 5
ez fy q - s 1
. » =
- H JEIT
. =
| eau [y H JEE -

=
qw
;;;;;;;;;;;;;;;
H
dlrce o lo] NI
2 2
e 2 q e 2
5 1 »
g K — e
2 2
e o]y, H el
u 24 i | I

B¢
54—t

e
o
s ol
5 S -
= = i
- = i
e
cosiin
-
. .
"y e
=%
[y -4
.4
Z

Figure 54 - Program Counter PCB Schematic (Rev B)

iZElE Page |53

2556 Video Card & Data Memory

.........

Figure 55 - Video Card & Data Memory PCB Schematic (Rev B)

On the first revision of the data memory module, it was found that the circuitry for “Game
Mode” was not present. To rectify this, an additional pin was added on revision B which

allowed the Video ROM to be carrectly connected fo the mainboard signal.

S4|Page 1281e

. Author: Gavin Tersteeg

<
3
=
=
Ay
=
e
N
N}
<
=1

PHHCT3??
7-Segment Registers

sssweswEEED
PHHCT3I??

eaeascaaam
ceaccaaaal -
swvoeETOED
(YYYTYYTYY BR
PUHCT3??
coveoosoooE®
Ceacscasadan
TYHCT3??
seommevoRD
cacaacaaam
PYUHCT3??
cesereEEED
TYYIT T b
TYHCT3??
esooooooED
Feneﬂnnnnnn
PYHCT3??
Seaaacaaaaam
TYHCT3??
cosocoEmoED

o
@

l
]
|

i

o
o
-
n

5}
(¥}
=
&
5}
{*)
=
@
"
L~
(*]

spEEEEEEEEEED =
7-Segment Select
aa@
-

couo7a

B
)
M
<
s
o
;
S

esmsoEsoEREERED

DMEM Address
aaAaAAAN
cTEDOED:

Signal Decoding
aaasaam
ssEEEED.

fidGSScacacaaam

evoeEs[ePoreeeeE:

dnnnnnnﬁ
[7uHcT138]
essToEED
?HHCT13&]
esoEEEEO
To0000eoR:
DMEM Output

o
(5

]

(5]
i
3]
PUHCTI?? | |s 7uHCT32
_055559555959

]

we?chlie

¥

HME2256LP-70
GARAAccEEERaam

DMEM Data

Datz RAM Character ROM
Rip Data CEEESO % q
oty Memory chno rs @

-1
PYHCTEUY |
sovooDoooDnD
DMEM Bank
CESSSasaasal

Expansion Bus

sy
;i (=) PC1L5S50DN

o

IDE Cantral

eoeeods[ee

=
=

sgessEEEEBEEEEEOEEEEDED
Cy7 WRITEENABLE :

b 3 weoaz
e Cyg WRITEBACK MUX [n] 1.8432 3[n][ﬂ ﬂn:;eﬂaﬂeﬂ O_‘ ca
- otz [Fluk =

[@]a

EEEoOOOD N

] = p : . o

“leeppom

N
TIL / RS232
= = = lJp1
=
TIL Serlal

Figure 56 - Video Card & Data Memory PCB Implementation (Rev B)

-

2.5.6 Design 5 — PCB Revision C

The final design of the project was not complefed in fime fo have a profofype ordered.
Unfortunately, most of these mistakes/errors found could have been resolved with some

more time and effort spent foward examining Revision B.

2561 Mainboard
The inclusion of a capacitor on Pin 20 of the compact flash IDC connector (see Figure 57) was

infended fo be a bulk filter capacitor; however, the design used is fundamentally not a bulk

izglE Page |55

filter capacitor. Nof only does the capacitor need to be polarized, but it must also be
between +5V and ground alongside additional smaller capacitors fo dampen switching

frequency and PARD noise.

20
22 . C7

124)| 100uF

126 ® “ /l\ +5V

285
30

SI—

?

Figure 57 - Inline capacitor for Mainboard

Revision C should include a proper electrical design for bulk filter. Current Revision B boards

can be repurposed by simply bridging the connecfion using a jumper wire.

2562 Arithmetic Logic Unit
Something was unforfunately looked past in the ALU during a revision check. Since there

are fwo ALU designs, it was assumed that both designs are modified in tandem; however, a
simple mistake was made during the modifications from Revision A to Revision B for the
ALU. In Figure 58, Pins 8 and 11 are not connected fo the adjacent IC. These wires were
incorrectly swapped in Revision A buf were forgotten to be reconnected for Revision B in the

ALU NOR version. For the ALU design, the wires are appropriately connected.

Al
3y—B8 g L/
AYLS A2
L
A3
L

Figure 58 - Missing wire connections in ALU NOR schematic

56|Page iZElE

izglE Page |57

3 Implementation Details

3.1 Initial Implementation Plan

Before building any implementation, the simulator’'s section had to be mapped fo modules
able to work on the breadboard. This is the most imporfant part of the planning stages, fo
ensure our designs would work before pufting everything together. The goals and focus for
the first semester were to work on the breadboard prototype and get the design working on
a more modular version before the PCB. The PCB was going fo be a goal in the second
semester after we knew we had a working prototype and design. Although we did not know
aft the beginning how this was going fo come fogether, we understand that a module-

focused design would be the best as a learning ftoal, and this was inifially the goal.

3.2 Design

To start implementing the design of the 1281 CPU in both a breadboard and PCB
implementation, we needed fo starf laying out the individual modules funcfionally and how
they interact with each other and the user. The beginning of this work was available in the
past interactions, the Verilog, and the Simulator implementatfion. This core was used heavily
in the Program Counter, ALU, Register File, and MUXs. Having clear diagrams for
functionality and logic already explained allowed for the logic to be mapped fo physical
chips and schematics to be created. These were some of the first breadboards to be built due

to the lower inifial design required.

Other modules required for the 1281 CPU implementation need fo have the purpose
maintained but mefthod funcfionality reworked to suit a physical implementation. The
confral fable was the simplest of these reworked maodules; the individual Boolean logic was
swapped with the look-up fables type chip. This allowed for the confrol table fo serve ifs
function of converting the instruction line to control signals around the machine and

allowing easy updates to the logic used.

Two modules needed heavy rework o allow for all the required functionality tfo be present.
Code Memory and Data Memory were discussed in depth for a long fime as solutions were
looked for to allow funcfionality and simply implement and explain fo students learning

about the machine. Since Code Memory was deemed a vital parf of any festing occurring in

the first semester, this was prioritized over Data Memory.

This process allowed for Code Memory o be implanted with debugging functionally added
on fo ensure the learning fool is the best it can be. The existing BIOS chip seen in simulator

1281 was split into a set BIOS stored in ROM and user programs stored in RAM. The

58|Page iZElE’

advantage of this system was that ROM was not easily writeable, but RAM chips were,

allowing for different programs to be uploaded and run with little delay.

The minimum viable processor was built in the first semester of our project. This allowed
festing fo be done on most of the breadboard modules and ensured the functionality of our
design so far. Continuing the work into the second semester was first finishing the
breadboard implementation. With the plan for Data Memory finalized, the module was built.
Another module was added fo the design to help Code Memory get the user programs from

Dafta Memory, the Writeback module.

While the final breadboard implementation is being thoroughly tested, the focus of part of
the team moved to starting PCB schematics. These were quite like the exisfting breadboard
versions simplifying the design process. The design process for overall PCB functionality and
appearances was discussed until the main board supported the modules and connected all

buses through this.

The first iteration of the PCB modules was created in KiCad and fabricated. With our previous
work with the breadboard implementation, we were confident in the design of the i281e CRPU
and moved forward with soldering all the various logic chips and LEDs onto the boards for
testing. After putting them all fogether, we found various errors in our schematic and PCBs,
causing reworks to be needed. These were small errors with the PCB that were all corrected

on the Rev A boards fo ensure the board works in theaory.

We started to create a second revision of the PCB modules, Rev B, that fixed our errors,

allowing for printfing future boards. These were ordered to be built and fesfed again.

3.3 Functionality

The i281e CPU is capable of a wide range of functionality since we have built a compufter.
The BIOS we have developed allows the user fo confrol the i281e CPU using a terminal and
DOS/281 commands. A user can hook up a dedicated terminal using a serial or a lapfop using
USB. This allows freedom in the user options. By using a ferminal and command, a user can
load programs into RAM from a compact flash card that is infegrated with the data memory
or upload their own programs o the compact flash card. This allows the i281e CPU to be
programmed for a wide range of functions. We have exisfing programs to show off sorting

algorithms, do basic math, play pong, and display graphics in the email window.

The 1281e CPU was also made with an expansion bus, adding the ability to add even more
functionally to the computer. We have already added prinfing ability. Even more expansions

can be attached here, like a sound card.

izglE Page |59

The i281e CPU itself is already quite capable as a learning tool. When designing, we were
hoping to get clock speeds of up to 1 MHz; in testing, we were able to achieve 2.5 MHz and
remain stable. It currently runs at 2 MHz the fastest normal operatfion speed. While running,
we measured the power of the PCB to take 800 mA at 5 V.

The size of storage in the i281e CPU has also been increased compared to the existing 1281
CPUs. We have 128 words for the BIOS, 32 kilowords for Code Memory's RAM, and 32
kilobytes of data memory. The compact flash memory also adds an additional 32 Megabytes

of storage, like a hard disk.

The PCB implementation also kept the benefit of the breadboard implementation since they
are both modular. By tfaking a module out like a mux, a user can attach an external mux, and
the enfire 1i281e CPU waorks like nothing is different. This makes it so that the breadboard and

PCB implementations are capable of each ofher.

3.4 Finances

During our first semester on this project, we started with a budget of $1000. However, as the
semester progressed, it became evident that this budget was insufficient, with fotal
expenditures reaching $731.44. Recognizing the expanding scope of our project, Thankfully,
the ETG recognized the project's significance and increased our budget accordinglu.
Nevertheless, we mainftained meficulous financial fracking and documentation throughout

this period.

Our documentation efforfs extended to creating an autfomated Bill of Materials (BOM)
system, streamlining the process of cataloging parfs and sourcing information. This system,
derived directly from our schematics, not only facilitated infernal organization but also

served as a valuable guide for potential project replication.

The breadboard implementation incurred a fofal cost of approximately $850, encompassing
expenses related fo breadboards, wiring, LEDs, and supplementary components like the

wooden mounfing board.

However, the PCB implementation mainly involved costs associated with saldering
components onfo ordered boards. While precise fracking of these costs was relaxed
following the budget adjustment, a rough esfimate places the cost of one machine at around
$400.

Our progress has been met with amazement from both our client and the ETG. While the

breadboard implementation served as a valuable steppingstone, it was not an effective long-

60|Page iZElE

ferm solution. Instead, it provided crucial insights and experience, laying the foundation for
the creation of the PCB implementation.

Accomplishing this transition was imperatfive nof only for our project's success but also fo
provide future students in 2810 labs with a clearer understanding of the requirements and
challenges they might encounter.

In summary, our project's financial journey reflects a dynamic adaptation to evolving
requirements and resource consfraints. The transition from breadboard to PCB
implementation nof only optimizes costs but also enhances project robustness and

reliability, aligning with our goals of efficiency and sustainability.

izglE Page |61

4 Broader Context

As noted in the project requirements, the i281 processor aims to be an educational tool for
both CPR E 281 and futfure classes related to processor architecture. Qur target audience is
students in the ECpE department of lowa State University and individuals inferested in
computer architecture.

The ECpE department is affected economically by our project. Not only are they the current
funding source for the senior design project but they will also be responsible for purchasing
and mainfaining the 1281 processor’'s components when deployed fo future labs.

It will be noted that there is no societal impact or need for this project. While it is beneficial
for students to be educated about grand-picture computing, the hardware-based i281

processor does not provide a significant societal impact to the educational program as seen
by the team. This impact may become larger after the development and deployment of the

hardware-based i281e processor.

4.1 Identification of New Effects

As menfioned in section 4.4 of our design document, the primary effect that our project is
educational. The ulfimate purpose of the i281 CPU is fo be used as a feaching tool fo better
educate ECpE students on digital logic and computing basics. As we continue o work
through the design and implementation process, we have been able to identify new effects

that our project may have on studenfts,

Originally, the primary goal of our project was to teach CPU architectural basics. Through the
experience of our own implementation work, we have found that it can be useful for
feaching other related subjects. As the 1281 CPU is bullt out of discrete logic chips, the
electrical characteristics of these parts must be considered alongside the purely functional. A
student working with the 1281 platform would get to learn about how digifal logic and basic

elecfrical engineering intersect fo create useful products.

4.2 Evidence Demonstration of Positive Effects

Through a classroom setting, the i281e CPU can be used fo teach electfrical design, computer
architecture, and assembly software design in a more refined detail than shown in any pre-
existing class at lowa State. The processor itself has been demonstrated to show a large
range of capabilities fo ETG and our advisor/client.

4.3 Justification of Negative Effectives
The i281e CPU project can be costly fo manufacture and implement. Throughout our design
process, we have ensured that the overall design and implementation are robust and can

62|Page iZElE

withstand a reasonable fime. Measures have been taken fo mitigate the cost of PCBs,
components, and assembly. Lastly, all implementations are or will be heavily documented fo
ensure future reuse and ease of repairability.

5 Testing

5.1 Process

What's the overall process of fesfing?

5.1.1 Breadboard Testing

5111 Unit lesting
The i281 project involves building several smaller sub-components that will eventually need

to inferface and interoperate with one another. Instead of building all modules and then
testing them fogether as one system, we setftled on a strategy of individually verifying the
functionality of each sub-component before attempting fo connect them. This unit-testing

strategy is done in fwo stages.

First, the unit is tested electrically. There are many common mistakes that can be made
when wiring a solderless breadboard. Before power is applied to the module, the resistance
between the 5 volt and ground rails is checked fo ensure that there are no short circuits. If
that test is successful, then the power pins on each infegrated circuit will be checked to
confirm that they are on the carrect power rail. By doing this, we can be confident that no
damage will come to the components when power is applied. Finally, once power Is applied
to the breadboard the electfrical characteristics are checked. If the voltage Is found o be
sagging, too much current is being drawn, ar if chips are geffing hot, power will be removed

and the design fo be reviewed for errors.

After electrical tesfing is complete, the sub-component is fested logically. To assist us in this
fask, we built testing boards which allow us fo run manual test cases for the modules. These
“tesfting rigs” consist of banks of switches and LEDs, so inputs and be manually sef and
oufputs and be visualized (See the image below). Using the switches, we can fest how the
circuifs react to changes in the switches. By doing this, we can fest most, if not all, scenarios

that the circuit will go through.

iZElE Page |63

Figure 59 - Testing Rig

Assuming all electrical and logical tests pass, the sub-component will be marked "OK” and
set aside for integration tesfing with ofther modules. By perfarming this process, we will have
some degree of confidence about the funcfionality of each module before attempting fo

make them work together in a larger system.

5112 Interface lesting

In the design of the original i281 processar, there are a few poinfs where the user can
inferact with the stafe of the machine:

e The "switch regisfter”, which manually be sef by changing a bank of 16 swifches.

e The executfion control secfion, where programs can be stopped, started, and stepped
through depending on the desires of the user.

e The "game mode” switch, which changes how the 7-segment displays format

information.

These interfaces are adequate for casual users running example programs for educational
purposes. However, we realized earlier on that we would need slightly more sophisticated
inferface facilities for system and integration level testing. For that reason, we decided o
combine almost all user inputs, execution confrol, and debugging opfions into one module.
This module, known as the “user panel”, possesses all existing inferface optfions plus a few
new feafures meant to assist in system debugging.

64 |Page izglE

00000000 00000060

INSTRUCTION BUS
RUN GAMERESET STEP EXAM DEP DATA
AT A6 A5 A4 A3 A2 A1 AD
00000060
PROGRAM COUNTER
ISR

S15 S14 S13 S12 SHM S0 S9 S8 ST S6 S5 S4 S3 S22 S S0

Figure 60 - User Panel Design

Component Type Description

Switch Register This is a sef of 16 switches at the bottom
of the user panel. These switches are
further broken down info two banks of 8
swifches. They exist as the main way
that user data can be inputted to the
processor. The switch register performs
different operations depending on the
instruction executing or debugging
operation selected.

Run/ Halt Switch This is the first switch in the confrol
group. It allows the user to foggle
between automatic and manual
program execution. In the “Run” state,
the program counter will be
automatically incremented depending
on the configured speed of the system
clock. When the swifch is moved to the
“Halt” state, execution will indefinably
pause. In this stafe, the user is free to
use any of the facilities in the debug
group. Moving the switch back info the
“Run” state will resume program
execution.

iZElE’ Page |65

Game Mode Switch This is the second switch in the confrol

group. It controls how fthe first 8 byfes
of data memory are visualized on the 7-
segmenet displays of the video card.
When the switch is down, the confents
of memory will be displayed in
hexadecimal farmat. When the switch is
up, the bifs of each byte will be mapped
directly fo segment on the display.
Resef Switch Thisis the third and last switch in the
control group. It Is used fo reset the

processor state back to the boot state.
At this state, the processor can be
booted, or opfionally debugging
operations can be executed. When the
processor is first powered on, the reset
switch must be used to put the
processor into a defined state.

Single Step Switch This is the first switch in the debug
group. When the processor is in a “Halt”
stafe, strobing this switch will send a
single clock cycle to the processor. This
can be used fo manually step through a
program for debugging and educational
purposes.

Examine Switch This Is the second switch in the debug
group. It is also the first switch that is
unigue fo the hardware implementation
of the i281 design. When the switch is
strobed, the confents of the lower 8 bits
of the switch register are added to the
program counter, and then incremented.
This value becomes the new program
counter. During this operation, the stafte
of the ofher processor components is
not affected.

Since the program counter and the
location in code memary that it points o
Is always visualized, this allows for the

66|Page iZElE

contents of code memaory to be
manually checked without executing the
Instructions stored.

Depaosit Switch This is the third switch in the debug
group. Like the examine switch, it is

unigue to the hardware implementation
of the 1281 design. This switch is
designed to be used in conjunction with
the examine switch. When this switch is
strobed, the confents of the switch
register are placed in the memory
location pointed fo by the program
counter. The program counter is then
incremented by one.

The purpose of this switch is to allow for
the manual programming of memory
without the assistance of the BIOS ar
Bootf Hard Disk.

Code / Data Switch Thisis the fourth and final switch in the
debug group. It contfrols if the deposit

switch enters dafa into code memaory or

data memory.

Table 10 - Switch Types and Applications

In addition to the front panel, the clock speed can be controlled via the rotary encoder found

on the clock module. This can be used fo dramatically slow down processor execution.

The main way that the user panel can perform these debugging operations is by “mocking”
instructions on the instruction bug. The “Examine” and “Deposit” switches work almost the
same as the “Single Step” switch, except for one key different. When these switches are
depressed, the code memory module will de-assert the bug, and allow the debugging board
fo assert a single insfruction instead. This instruction can be a JUMP, INPUTC, or INPUTD
depending on the desired operafion. When the single step circuity first, this instruction will
be executed instead of an instruction fram code memary. This allows for the debugging

feaftures to be added to the user panel without incurring much hardware complexity cosfs.

Technically, the Boot Hard Disk (BHD) can be swapped out to provide different user/example
programs; however, this is nof considered a traditional inferface. To test the boot procedure,
we will be swapping programs on the BHD fo confirm: insfructions load info RAM, critical

confrol lines are solid, and operation after boot is as expected.

iZElE’ Page |67

5113 Integration lesting
What are the critical infegration paths in your design? Justification for crificality may come

from your requirements. How will they be tested? Tools?

Due to the complexity of the i281 design, we figured that attempting to build the entire
processor and then debug it would be too difficult of a job. To streamline the intfegratfion
process, we decided fo build and fest a “minimum viable processor” before atfempfing to fest
the enfire system. This minimum viable processor, or MVP, consists of the bare minimum

required fo test processor activity. The MVP consists of:

e The User Panel

e The Code Memory Module

e The Clock Circuit Module

e The Program Counter Module

e The Insfruction Decoder Module
e The Register Module

e The ALUModule

e Various MUX Modules (Interconnection).

Imporfantly, the MVP explicitly excludes:

e The Data Memory Module
e The Video Card Module
e The Boot Hard Drive Maodule

By implementing a minimal processor, the critical path of the processor can be tested and

verified before more complex components are added.

Affter the minimum viable processor has been consfructed and verified, the rest of the
system can be put fogether. This involves consfructing and infegrafing the data memaory,
video card, and boof hard drive modules. These are all complex pieces of hardware, so it is
imparfant that the rest of the processor is known fo be functional before debugging of those

modules begins.

5114 System lesting

Each “island” of the 1281 CPU needs to be tested independently to ensure the functionality of
each section. These will be tested for base functionality fo prove they were properly built
and can interface with ofher sections of the CPU. Testing is completed using an exisfing
festing board capable of inputfting fwo 8-bit numbers and outpuffing an 8-bitf number; since
fwo of these boards exist, we can fest up fo four inpufs and two oufputs simultfaneously. We

also use an Arduino microconfraller for festing purposes that creafes a clock signal. This can

—

68| Page izglE

[|

oufput a clock signal at any frequency required and a manual foggle clock; for testing, this
often kept a low frequency so that we can watch individual steps of the component fo

ensure proper functionality.

When putting the different “islands” together, we will need to test the interconnects of each
component fo ensure the sections are working as expected. Along with individual testing
when putting “islands” together, we will also need to test the overall operations of the CPU.
After connecting different components, these infegration fests will be completed frequently,

whenever possible.

5115 Regression lesting
We are ensuring that new additions do not break the old functionality by ensuring

compatibility between the new and old components before connecting and running them.

After they are connected, we can fest the functionality of it via the 7-segment displays and
various ofher LEDs around the board. This is driven by requirements as one of the project's
goals is to have a class faught about and around the CPU. The students will then build and

test their designs with our CPU.

5116 Acceptance Testing
The first form of acceptance test we must do is check the functionality of the individual

system modules. Each module has a set of requirements defined by our client. This ouflines
what features the module should have, what parfs of the module must be visualized, and
what implementation strategy should be used. We will check with our client during the

development and debugging process so ensure that each module meets their requirements.

Affer system infegratfion is complefe, acceptance testing is done by ensuring that the 1281

CPU can fulfill all the requirements originally sef out by our client. The main aspect of this is
that the system must be able fo execute all existing 1281 example programs with little to no
modification. If all example programs can be successfully executed, it is safe fo say that the

processor is in an acceptable state.

5.1.2 PCB Testing

5.2 Results

Presuming the system/design/implementation has been tested, what were the results for

testing? Did the implementation perform adequately? What was the coverage?

izglE Page |69

5.2.1 Breadboard Results

We are testing the sections of the CPU as they are built fo ensure they are funcfional. So far,
we have built and fested the 8-bit 2-1 mux, code memory, program countfer, arithmetic logic
unit, register files, switch board, and confrol fable circuifs.

The 8-bit 2-1 mux were some of the first components we builf for the 1281 CPU. Since we had
no existing festing hardware, we had fo make a new fesfing board capable of proving input
and oufput paths to the component. This testing board is used throughout the other
components fo check functionality.

The 8-bit 2-1 mux was modeled after the picture below, faken from 1281 class notes
explaining how the i281 CPU worked. We ensured each input bit mapped to the correct
oufput bit when that signal was active.

Figure 61 - 8-Bit 2-1 Multiplexer Design

When tesfing the program counter, we inifially fried to use a swifch as the clock pulse but
found this unusable without a denouncer. We used an Arduino as the clock for this sensifive
component fo ensure our testing conditions would match the final usage. This will be used
as the clock in future festing as well. The picture above demaonstrates the expected
functionality of the component. We started by only testing the program counter when c2 = 0,
increasing the stored number by one each fime. This would help us narrow down problems
in the circuit before adding additional signal paths to the data path. Affer getfing the main
wires of the oufput stage info the register correct, we added an offsef to the program
counter ensuring that all functions worked as expected.

70|Page 1281e

| I
._iﬁ 000001
[
Vv
6-bit adder €0
6
-E, lﬁ y Clock
\Y4
6-bit adder ©o
= < l C3
— 1 \ PC .
A

Figure 62 - Program Counter Design

Tesfing the code memory section was done in the same manner that all the other modules
were fested. The only difference is that fwo testing modules had to be used to accommodate
the number of inpufs and oufputs for the module. All features of the code memory secfion
were then manually checked out. This includes reading from RAM and ROM, writing fo RAM,
and different bus arbifration states depending on the inpuf address, program counter, and
control lines.

Figure 63 - Testing Rig Connected to the RAM and ROM

We fested the ALU in a very similar way. We used one of the tesfing rigs fo hook up fo the
ALU since they were designed fo have two 8-bit input buses and one 8-bif oufputf bus. The
ALU had three contral signals, so we connected each of those two by a switch. We also used
the Arduino Nano clock board fo simulate the clock signal in the flag register chip. By

changing the values of Gz and G5, we were able to switch the mode the ALU was in. We

izglE Page |71

exhaustively tested each mode with multiple different pofential inputs. To see if the design
was working, we looked at the output LEDs. Based on our inputs, we predicted the outputs
and checked if they matched the LEDs. For the addition and subtraction arithmetic, we used
inputs from Professor Stoytchev's CPR E 281 class slides to verify our results. In addition fo
the outputs, we used the slides to check if the Zero, Negative, Overflow, and Carry flags were
friggered. When we initially tested the design, we found a variety of errors such as an
incorrect orientation of the output LEDs, incorrect overflow errors, and issues with the shifter
circult. These issues were then debugged, fixed, and some led fo Design iteration fwo. After
the issues were addressed, the design was refested and passed.

5.2.2 PCB Results

Testing for the PCB model was done in several ways. Since the PCB schematics were based
on the schematics used fo build the prototype unit, the fundamental circuitry behind each
unit has already been ftested. That wauy, cerfain points of failure on the PCB implementation

can be ruled out when debugging.

In terms of physical testing, the PCB modules were first evaluated the same way as the
breadboard modules. Affer each module was assembled, continuity was fested between the
power and ground plains to ensure that there were no shorfs. The +5V and GND pins of each
chip were also fested to catch any wiring mistakes. Finally, power was applied to these
boards individually to check power consumption and look for overheating chips as a sign of

faulty wiring.

72|Page

Compact Flash

Figure 64 - Partially constructed PCB machine to test electrical characteristics

Once a module has been confirmed fo be electrically safe fo work with ofher hardware
without risk of damage, the funcfional components of the module are tested next. Using the
24 pin IDC connectors found in the boftom-middle section of the mainboard, different buses
could be connected. By connecting the input and oufput buses of some modules to the
switch inpufs and front panel output, several modules were able to be tested. The program
counter was also able to be independently tested by supplying it with a clock signal from the

front panel.

Using a multimeter, we also tested individual bus connections between different modules o
ensure they went where they were on the breadboard prototype. We found several
connecfions on the revision A machine that did not match their expected desfinations on the

design document. These issues were fixed in revision B.

Most of the festing and debugging on the PCB machine occurred when the full system was
assembled. By doing this, we could attempt fo execute simple programs and then compare

the CPU stafe to the breadboard profofype and the emulator. Any insfruction that failed to

i281E Page |73

result in the carrect state was traced back fo its corresponding circuitry and maonitored using
an oscilloscope. Using the single step feature on the front panel, instructions could be fully

evaluated on a cycle-by-cycle basis.

With maost basic insfructions confirmed to be working, we were able to use the “Maonitor”
program fo continue our festing and evaluation of the PCB machine. The monitor allows for
memory and program execution fo be manually manipulated over the serial UART

connection.

Figure 65 - Usage of the monitor program to examine portions of memaory

Using the monitor program, it was significantly easier to enter information info instruction
and data memory. Information input into data memory could also be examined fo ensure
that the memory circuitry was storing and retrieving information correctly. In addition to
RAM, hardware devices hooked up to the data memory module could also be manually

inferacted with fo confirm basic functionality.

With the monitor program working, this opened the option for test programs to be uploaded
fo the processor over the UART and executfed. Many of these test programs were exisfing
1281 programs such as bubble sort or the banner program. We also wrote custom unitf fest
programs that exercised the ALU and made sure that all flags and outputfs were being sef as
expected.

74|Page izglE

B

BRNO
BRNN
SUBT
BRNZ

1
a4
g

(L I T T T Y

Figure 66 - Snippet from ALU unit test program

Page |75

1281

6 Conclusion
6.1 Progress

What's the progress of the project? Is it fully completed? Is there more work to be done?

Our constfraints for the project in our goals were our academic and external work. There
were fechnical hurdles with translating an FPGA design info a hardware implementation;
however, these were minimal and handled in a fimely manner. Physically implementing the

profofype on breadboard took the most fime out of the project.

6.1.1 Time Spent on Project

For the second semester of this project, Table is the recorded fime of project work within an
estimate 10% deviaftion. Hours were recorded per quarter hour on a periodic basis in fandem
with our “biweekly reports.” The fotal cumulative hours for the semester across all persons
are 773.75 hours.

Name Period O1 | Period 02 | Period O3 | Period 04 | Period 05 Cumulative
(est.) Hours
Daryl Damman N/A 45 14.5 65 80.5 205
Logan Lee N/A 20 15 41 34 130
Grant Nordling N/A 7 7 15 14 43
Braxton Rokos N/A =y 12 375 41.25 14475
Gavin Tersteeg N/A 30 25.25 80.75 85 251

Table 11 - Hours toward i281e project for second semester

Unfortunately, time was not recorded for the first semester of the project. As such, we can
only assume fthat the amount of fime spent on the previous semester is roughly 85% of the
fotal cumulative hours of this semester, which is approximately 657.75 hours. This would

mean that the total cumulative hours are somewhere in the range of 1400-1600 hours.

6.2 Project Value

The final version of the i281e CPU we have put together is quite efficient for ifs usage in the
classroom and as a learning tool. Throughout our project's design and implementation, our

client, ETG, and ofher visitors have been impressed with what we have managed fo do.

When starting this project, we were fold fo make a physical version of the i281 CPU like the
existing version in CPR E 2810 slides, a simulator, and Verilog implementation. We took their

existing work and made an equivalent physical 281 CPU and went above the old capability,

761Page 1281F

making our PCB into the i281e CPU. The base functionality was not comprised in our

implementation only improved upon.

The i281e CPU is helpful for students taking CPR E 2810 and can be used further in follow-up
classes to teach more about the computer system. CPR E 2810 finally has a physical version

that sfudentfs can use and learn more from.

By building a fully modular design, it also allows even more usage than just explaining
inside of a classroom or lab. Dr. Stoyfchev has discussed with us his goals of having an
additional class that is a follow-up in the sequence to CPR E 2810, like CPR E 4810, that
discusses the i281 CPU in more depth and even works on building some modules in the lab.
This shows another advanfage of making a breadboard implementation before the PCB
implementation, as we already have a working version of these for a base of these

hypothetical labs.

Overall, this project, the i281e CPU, often gives many educatfional opportunities for the

student body fo take future computer engineering classes.

6.3 Future Considerations

Although we have fried fo accomplish everything in our senior design goals, there is always
more work on this project that can be down. For our process to be utilized effectively in a
learning environment, the information we have produced about the i281e CPU needs to be
properly organized and managed. We have done work fo help this process throughout our
fime, but it Is never complefe. A user manual is being wriften to help future users understand

how o use and manage our design.

The PCBs have been designed, and many have been produced for testing, but not all were
able to be produced, mainly Rev C. There is also software development that can be worked

on, allowing for more expansion devices to be inferfaced with the i281e CPU.

izglE Page |77

1 Appendix A
Operation Manual

This appendix provides all necessary information required o fully use, maintain, and apply

the 1281e CPU. Below, each caftegory is split into their respective sections.

78|Page 1281e

1.1 Module Layout
1.1.1 layout of the i281e CPU

From Figure 67, we can see the proper alignment and orientafion of the modules. Use this
Figure as a reference to the instfallation of the modules. When installing the modules onto
the Mainboard, ensure that the i281e CPU logo is in the boftom left corner. There are 10
modules on the Mainboard, and 4 of them are the same MUX Module used multiple times in
different orientations. As a rule of thumb, for all modules excluding the MUX Modules, all the

module fitles silkscreens should be angled the same way as the text on the Mainboard.

Control Table Module M

|

$EETVRES ¢¢

&

SR DVIEM Module i)

t -5
ssesece §

=iy, L i eeeeeeee
3 :] Ll >
-)

LW

- aeew

————

»

|
ol
» »

I 7 Program Counter
s — ' L et Module

Figure 67 - Modules Labeled on i2871e CPU

Additionally, if we look at Figure 67, we can see the layout of the Mainboard. Each of the
modules has a location designated by the silkscreen. The four holes of the larger modules
match up with the four holes on the backboards of the desired locatfion. This is where the
mounting hardware will connect the modules securely to the backboard in addition to the

Polycarbonate top and bottom covers, as seen in Figure 68.

C11 MUX

Control Path Signals

r
hev

Compact Flash

Figure 68 - Mainboard PCB without Most Components

1.1.2 Mounting Methods

To safely affach the module fo the Mainboard, ensure the mounting hardware is installed in

the holes on the Mainboard. The mounting hardware is done in a “sandwich” design.

e layer]
o 1/4” acrylic/polycarbonate panel with screw holes appropriately aligned.
o Thereshall be five >10mm rubber feet in cross formation underneath the

acrylic/polycarbonate panel.

e layer?
o Mainboard PCB
e layer3

o Respective modules (REG, PC, DMEM, etc.) will be seated on the pin headers.
e layersd

o 1/4” acrylic/polycarbonate panel using top panel A or B (see hardware repository).

In between each layer, there will be respective standoffs and spacers to ensure the
hardware remains in a soundly rigid fashion. See Figure 69 for an example of this sandwich
design put together. The hardware repository contains information regarding the exact part

information. The following steps should be taken for each accessible mounting location.

80|Page iZElE

e layerl
o Insert screws with one washer inserted boftom-up with male-to-female standoff
fastened with the male end facing upward.
e layer?
o Sefthe Mainboard PCB on-top of the upright standoffs and fasten fwo washers
and a spacer.
e layer3
o Setfeach respective module in the correct orientation and fasten male-fo-female
standoffs with the male end facing downward.
e layerd
o Settoppanel A or B and fasten screws with one washer into female receptacle of
standoff.

Some PCB modules cannot be afttached to the top panel and will need to have a screw with
washer inserted at Layer 3. Once the mounting hardware is installed, one can line up the
corners of the module with the 4 mounts. Take note of the orientation of the module aligning
it. Once you are ready fo atfach the module, simply press down on the module evenly. If
done correctly, all the pin headers should have gone info their corresponding recepfors on
the Mainboard.

Figure 69 - Mounting Hardware

To safely detach a module from the Mainboard, ensure that the acrylic fop sheet is no longer
attached fo the boards and the top 15mm standoff is removed. With an even distribution of
strengfh, pull up on the module. The module should pull up without foo significant of force. If
you are having a hard time defaching the module, double check nathing is restricting you. If
there are no restrictions, hold the module by its input and oufput header edges and wiggle it

back and forth until it starts fo give way. Be genfle fo not bend pins or crack a solder joint.

izzlE Page |81

1.2 Power / Power Safety

One of the most important things to know about the i281e CPU is how fo furn it on properly.
Questions you may be thinking to yourself might be “Do | need to wear an anfi-static wrist
strap?” or “How do | know if the CPU is on?” This section will give you all the answers to
those questions and ensure that the CPU is nof damaged in the process of turning it on or
using the device.

An anfi-stafic wrist strap will prevent elecfrostatic discharge (ESD) from damaging the CPU.

ESD can damage the IC chips or alter their programming. To prevent damage, always ensure
that you are grounded prior to fouching the equipment, this includes plugging in the anti-
static wrist sfrap into the designated areas. Most lab tables and desks have ports in them
that correspond to the pin af the end of your anfi-static wrist strap. If your anti-static wrist
strap has a clip at the end, connect it fo something made of metal that is not painted. It is
preferred that you ground yourself to a fable or alternative locatfion, but there are always
opfions. When anti-stafic wrist straps are not provided, this grounding could be as simple as
fouching an unpainfed metal object prior fo fouching the equipment. An anfi-stafic wrist

strap overall is a simple method fo ensure you do not harm the electronics.

1.21 How do | plug the i281e CPU in?

First, you need to find the power cable and find an outlef to plug it info. The port fo plug in
the power cable is on the top left of the Mainboard. This port is on the underside of the
Mainboard. With one hand, hold the Mainboard and with the ofher, insert the plug into the

porf. Ensure that it is a snug fit.

Second, press the button right next fo the port on the underside of the Mainboard. Once you

press the button, there should be a light blue LED (Rev B) that lights up near the bottfom right
of the mainboard. Once this LED is lit, the CPU is on. Power will be provided fto the board and

the starfup sequence for the i281e CPU must be achieved.

If the LED is not powered on when pressing the button, the plug may not be fully in. Ensure
that the plug is firmly pressed into the slot.

82| Page izglE

1.3 Front Panel Usage
The swiftches on the front panel are the main ool fo inferact with the i281e CPU and

influence its operatfion. A diagram with the switch layout is shown in Figure 70.

00000000 00000000

INSTRUCTION BUS

RUN GAMERESET STEP EXAM DEP DATA
A7 AB A5 A4 A3 A2 Al AD
E E E E ! ! PROGRAM COUNTER

HALT ISR
815 S14 813 S12 S11 S10 89 S8 S7 S6 S5 sS4 83 82 St S0

Figure 70 - User Panel Design
The red switches are used in the normal operation of the computer. The blue switches are

specialty switches used for debugging, sefup, and learning. The white switches are the

normal input switches used in other designs.

The current location of the program counter is shown with green LEDs in the middle right.

The top red LEDs show the current instruction line output by the code memory.

The PCB front panel design is shown in Figure 71, with each switch labeled.

CLOCK FREQUENCY

O . R 2 = ~ TR SELECTOR
128le g ! f gl ! Sw23

Panel

RUN/ GAME RESET SINGLE DEPOSIT CODE/
HALT MODE STEP EXAMINE DATA

SWlk SW1L? SWld B SWl9 Swel SW2l swee

SW1S SWi4 SW1i3 SwlZ2 SWil SWl0 Sw9 Swa SW3 Sw2 SWl SwOoj .

Figure 71 - Front Panel PCB

iZElE’ Page |83

Switches 0-15 are the input swiftches to the i281e CPU. These are used fo inputf dafa into the
computer manually. They are utilized when manually writing programs to RAM, when the
program is expected to input like in pong, and when using the debug switches to change the

location of the program counter (this will be talked about later).

Swiftch 16 contfrols the clock; kind of like the clock’s enable switch. This works by allowing the
clock frequency from the clock oscillator to propagate. Although ofher processes like the step
switch pulse the clock, this stops the i281e from running. When turning the i281e CPU on, the

computer should be in the halted state.

Switch 17 controls the game mode signal. This is a pseudo confrol signal that affects the

operation of the video card. Normally, the video card reads the data memory and convertfs
the data from binary to the decimal seven-segment equivalent; switch 17 is low. However,
when switch 17 is active, the video card reads each bit in the data memory as an individual

LED of the display. This is ufilized in some programs, 1281 PONG, and banners.

Switch 18 is the reset line for the i281e CPU. The resetf signal is sent to the rest of the i281e
CPU when activated. The reset signal clears the program counter, the data bus, the compact
flash register, and reset the UART.

Switch 19 performs a single step in the i281e CPU by pulsing the clock single once. The i281e
should be in halt mode before using the single step switch to ensure stability. Single step is
a helpful functionally fo have and use when understanding how the process is working,

allowing all the LEDs to be seen before an insfruction is done.

Swifch 20 is used for examine functionally. This allows the location of the program counter
fo be changed. When examine is active, the insfruction bus is overridden with jump
instruction; the eight lower switches are passed o the offset bus in the program counter.
This allows for the location of the next location of the program counter fo be sef fo any value
using the inputf switches. The program countfer's LEDs can be used to quickly fell where the
program counter will go affer releasing the swifch. The i281e CPU needs o be in halt mode

for stability.

Swifch 21is depasit and swifch 22 is used as the code/data memaory selection for depaosit.
These swiftches are used to load programs into the RAM chips and load numbers info datfa
memory. When the switch is acfive, the instruction bus is over with the INPUTC/INPUTD
Instruction, and the switches are sent to the RAM chips and data memaory input mux. After
the switch is released back fo the lower position, the insfruction is executed and loaded info
the corresponding location. The program counter is also increased by one in preparation for
the next inputf. Switch 22 is in the lower pasition when wrifing fo code memaory and in the

higher position when wrifing fo data memory. These write locations are also located af

84|Page iZElE

different points in memory; RAM addresses start at 0x80, and data memory starts at Ox00.
Examine will allow the i281e to move through these addresses for writing fo and afterward

when starfing the program loaded info RAM.

The clock frequency selector is a 12-point rofary switch that allows one to choose from the 12
selected frequencies. The different frequencies available with a 4 MHz oscillator are shown

in Table 12. The process shown be halt state befare switch frequency to ensure stability.

Position Frequency
12 2 MHz
11 1 MHz
10 250 kHz
9 62.5 kHz
8 31.25 kHz
7 7.81 kHz
6 1.95 kHz
5 244 Hz
4 61.04 Hz
3 7.63 Hz
2 1.91 Hz
1 954 mHz

Table 12 - Clock Frequencies

1.4 1/0 Ports

For the i281e CPU, there are several different types of porfs. Some are used fo connect the
Front Panel and ofhers are used o oufput data fo ofher devices. From Figure 72, we can see
five different highlighted locations. The Front Panel Bus (40Pin) and the Front Control Bus
(6DIN) are the two cables that connect the CPU to the Front Panel. See Figure 71in the Fronf
Panel Usage section fo see how those fwao cables connect to the Front Panel on the left side.
The Compact Flash Bus (40Pin) allows for a compact flash input adapter to connect to the
board. From here we can load dafa into the system. The Serial I/0 ports allow for RS-232
cables fo cannect the system. Additionally, not highlighted in Figure 72, you can see a USB-C
cable sticking info the CPU. The USB-C is another method for inputfing programs info the
system. There is an Expansion Bus (24Pin) and power oufput bus which allows for input and
oufput to newly created cards in the future. Additionally, there are also breakout pins, which

the next sectian covers.

-?ooooooo’o‘ g

S (SR
L~ ~

(]
» X

> L J
Front Pane Bu
(40Pin), L

@ fFront Control Bu
(6DIN

Figure 72 - 10 Ports of the i281e CPU

1.5 Breakout Pins

On the Mainboard in the botform middle, there are 14 breakouf female headers that can be
used fo connect breadboards to the i281e CPU. A specialized cable must be created that
connects to those 16-bif female breakout header to the breadboard using another 16-bit
male header. Figure 73 and Figure 74, below shows how the breakout headers are labeled
and laid out on the i281e CPU. Each of the headers are labeled with a Reference Designator
"BX”, X being a number 0-14.

BO Physical MUX
Instruction Low Bits
JPilm = =

Jp2 R
JP3

REG Input / C18 Out

Figure 73 - BO Physical MUX Pinout

86|Page iZElE’

— [+0]
[aa] (aa]

Instruction High Bits Instruction Low Bits

ol Lo
[aa] om

REG Port @ / ALU Input A Program Counter

m
o

REG Port 1 / WRTBACK DMEM Address / C15 Out

<t
[an]

ALU Input B / C11 Out DMEM Input / C16 Out

N
[aa]

ALU Output

DMEM Output

ALU Flags REG Input / C18 Out

Switches High Bits Switches Low Bits

Figure 74 - B1-B14 Breakout Pins

Figure 75 shows the pin layout for both the headers on the ribbon cable. The ribbon cable
header that has the 16P, aftaches to the breadboards. The ribbon cable header that has the
notch in the middle on the longest side for the PCB headers. Pin O is always on the side with

the red wire.

Figure 75 - Pin Layout for both i281e CPU and Bread Board Headers

Table 13 - Breakout Pins Explained below shows the Reference Designator, the labeled name
on the CPU, and what its data path really means. Table 13 - Breakout Pins Explained below
shows those paths more visually. Here you can follow the data path from and fo

components, so one could appropriately attach breadboards to the signals they desire. One

Page |87

could effectively remove one of the modules and use these headers to create a bread board

version of the module and test it with the full system.

Reference Labeled Name Meaning
Designator

BO REG Inpuf / C18 Out | Data Path from Physical MUX to Program Counter

B1 Instruction High Bits | Data Path from CMEM Instruction to Control Table

B2 REG Port O/ ALU Data path from REG Port O fo ALU Input A

Input A
B3 REG Port 1/ Data path from REG Port 110 WRTBACK module and C16
WRTBACK MUX Input O

B4 ALU Input B/ C11 Out | Data path from C11 MUX Output to ALU Input B

B5 ALU Qutput Datfa path from the ALU Outfput to C15 MUX Input O

B6 ALU Flags Datfa path from ALU Flags to Control Table

B/ Switches High Bits | Dath path for the Switches High Bifs to the Writeback
Module

B8 Instruction Low Bits | Dafa path from CMEM Instruction Low Bits fo Physical
MUX, C11 MUX Input 1, and C15 MUX Input 1

B9 Program Counter Dafa path from Program Counter to CMEM

B10 DMEM Address / (15 | Data path from the C15 MUX Outfput fo the DMEM

Out Address, (18 MUX Input O, and CMEM
BN DMEM Input/ C16 Dafa path from C16 MUX Qutput to DMEM Input
Out

B12 DMEM Outfput Data path from DMEM QOutput fo C18 MUX Input 1

B13 REG Input / C18 Out | Data path from C18 MUX Qutput to Physical MUX and
Register File

B14 Swifches Low Bits Datfa path fram Switches Low Bifs to Writeback Module
and fo C16 MUX Input 1

Table 13 - Breakout Pins Explained

Code Memory Instruction Decoder - JUMP @+12
ISR: OxFFOB Bel{ co c1 c2 c3 ca c5 c6 c7 €8 cs clo c11 c12 €13 Cl4 €IS €16 CL7 18
SELECT: 0x0B o o 1 o 0 0O o0 0 0O 0 0O 0 0 O O 1 0 0 O
BANK: 0x00 B8 B6
- Register File ALU
BANK: 0 [CO] b 27 0%X00 pope o B2 RESULT: 0x00
B: 0x00 0x00 FLAGS: 0000
WRITE: 0 [C1]
c: 0x00 (CONZ)
. Port 1: B(
l D: 0x00 0x00 \ OPR: 00 [C12, C13]
Code Writeback RPO: 00 [C4, C5] WFLAGS: 0 [C14]
OUT: 0x0000 RPL: 00 [C6, C7] 0x00:
CACHE: 0x00 Wp: 00 [C8, C9] 0x04:
— 0x08:
PRGM: 0 [C3) WRITE: 0 [C10] oo
0x10:

Program Counter

PC: 0x00
NEXT: 0x0C

BRANCH: 1

[cz]

Data Memory

00000000
00000000

00000000
00000000
00000000
00000000
" | wrTE: 0 [C17)
READ: 0 [C18])

0x14:

B7

~AEENENEN ARAREENE

Figure 76 - Breakout Pins Data Paths Visualized

The i281e CPU also has pins that can be tapped fo inpuf the +5V rail, clock, reset, ground, and

control signals to the bread boards. If the module that you are removing from the system

requires a clock signal and reset signal, you can expect to fap all four signals on the left of

Figure 77.If the module also requires control signals 12, 13, and 14, you could use a wire to

bring them from the CPU fo the bread boards.

Contro

| Path Si

Figure 77 - Power and Control Line Output Headers

Figure 78 shows one of these ftests. Here, we removed the C11 MUX, and replaced it with a
breadboard MUX. We used the +5V and GND line from the “Power OUT” headers. Since it
was the C11 MUX, we used the C11 control signal. As for the 16-bit headers, we used B3, B4,

and B8 which are the inputs and outputs of the C11T MUX.

Remove C11 MUX

Figure 78 - Bread Board to PCB Implementation

1.6 Running Programs

A terminal must be connected fo the computer to load programs info RAM for running them
on the i281e CPU. “Tera Term” is a good opfion for communicating with the i281e CPU.
Plugging in a USB cable fo the USB-C port located on data memory and a computer with
allow the user to see the DOS boot screen (DOS is explored more in later sections). To ensure
the DOS functionality works, the process should run at maximum speed. After selecting the

fasted clock frequencuy, toggle the reset switch and the i281e CPU will load the DOS menu.

The compact flash has different blocks for programs ready o run, from zero fo nine. Use “CD”
followed by a number to navigate to the corresponding block; for example, “CD 4” with allow
the terminal to see info block four. Use “DIR” fo list the programs stored in the corresponding
block. This will print out a list of programs that can be called; by navigating with these
commands, a program can be found. To run the program, fype the block it is located in,
semicolon, followed by the name of the program. For example, “4:BANNER” will run the

banner.sv program from the fourth block of the compact flash.

A halt command can also be called by using an ampersand symbol before “$4:BANNER”.

This is helpful if the program needs a slower clock speed to be visible than the boot process.

90|Page iZElE

After calling the program with a halt command, the program loads into RAM like normal, but
it will not start executing the RAM instructions after loading them. Instead, the i281e CPU will
be in aloop in ROM. This loop can be exited after setting the clock to a lower frequency, by
halting the i281e CPU and then using the examine switch. Simply toggle the switch with no

swiftches active and the i281e CPU starfs execufing the program selected.

1.1 Maintenace
1.1.1 Finding Bad Parts

When the machine is not working as expecfed, it might not be the program currently
running. There is a chance that a component overheated or something short circuited. If you
smell something like plastic burning or see a plume of smoke, it is probable that a
component burnt out. It is difficult to find the component when you are not sure where the
smoke came from. Look for physical defects on all components such as burn marks, melted
plastic, or misshaped components. Hover your hand over the board and feel for residual heat
coming from components. If you see or feel anything from those components, chances are
that those are the ones that got damaged. If you have access fo a thermal camera, you can
use It fo see which components are getting hot when the i281e machine is on. This dafa can

be useful to prevent the destruction of components.

Additional festing can be done via a multimeter or oscilloscope on components such as
resistars, capacitors, fransistors, and diodes. You could run a confinuity fest on them to see if
they broke down into an open-circuit meaning that no current can flow through the
components. You can also test to see if the parfs are working as expected and have the
properfies that their datasheefs say they should have.

One could also do some isolafion festing. Remove modules from the board and individually
test components and output pins. If a module does not act as it should, do more defailed
testing on the individual components of that module. Once you find the issue parts, you
need to switch them out for a new chip of the exact same part number, package size, and pin

layout.

1.1.2 Switching Out Parts

Throughout the life of the i281e machine, parfs will become old, damaged, or simply
breakdown. It is an occurrence that is simply bound to happen, so you need fo know how to
fix It. When a component isn't working properly and it needs to be replaced, there are two

mefhods that can be used: prying out the part or unsoldering components.

Prying out the part includes using a flathead screwdriver or some alternafive object to get

underneath a chip that sits in a dip package. From this, you can get leverage on the chip and

izglE Page |91

pry it up. This method is used primarily for the 74HCT logic chips that are in the dip
packages. We can see in Figure 79 on the left there is a logic chip in the dip package and on

the left, there is the part with the chip removed.

Author: Daryl Damman

o PN = T
vy W

M N P AR A0 AO

Figure 79 - Dip Package with and without Chips

Unsoldering components requires either a soldering wick or heat gun. To use the soldering
wick, press the wick on fop of the solder you wish to remove. Press your saldering iron into
the wick at the same location as that solder. As the wick heats up, it will start to draw the
solder info itself. If the solder is stubborn, add additional solder tfo the problem area and
repeat the process of using the wick. Sometimes adding additional solder helps the wick

absorb the solder.

If you have access to a heat gun, you can use that to unsolder several pins aft once. This
method Is beffer suited for components with mulfiple pins or leads close to each other. The
solder used on the PCB boards melts at around 700°F, so ensure that you set the heat gun to
the right femperafure. To remove camponents, aim the heat gun af the solder unfil it starts fo
shine like a mirror. At this point, the solder is in a liquid form. Use pliers to pull the
component out of the ofher side. Repeat as necessary. Be careful nof to aim the heat gun af
yourself. Do nof fouch the component with your fingers as the component may be hat.

Once you have the component removed, you can install the new one. For partfs that are
inserfed into the dip packages, firmly press the chip info the package. Ensure that the
semicircle af the center of the dip package aligns with the semicircle on the chip. If the chip is
not going in easily, use the pin adjuster or some pliers to make 90° angles on all the pins

poinfing downwards. Then refry pressing the chip info the package.

For parfs such as a resistor or LED, simply slot the part info the board. Then flip the board
over onto the opposite side and find the locaftion where the part is located. With your
soldering iron, apply heat to the solder pad. The solder pad is a ring of silver colored material
at the base of the through-hole connection. Once the solder pad is heated, press your solder
info the pad and pin it until it melfs. If you cannot getf the solder fo melt, put a dot of solder

onfo the tip of your soldering iron and try again. Once the solder is melted, it should attach to

92|Page iZElE’

both the pad and the pin. If done correctly, the solder should take up the whole pad and not
be rounded like a ball (See Solder Joints 1and 3-7 on Figure 80). If the pad can still be seen,
reflow the solder and heat the pad unfil it covers the whole pad. If the solder is not visibly
attached to the pad and pin all the way around the pin, add more solder until it covers the
whole pad. Solder Joint 2 on Figure 80 is lacking some solder. The joint should still function
correctly but would be more reliable if there was more. If the solder joint looks like a ball, you
have put foo much solder on the joint (See Solder Joint 8 in Figure 80). Cansider applying a
solder wick as discussed above to remove If the solder joint looks darkened, you applied too
much heat and the flux in the solder is burned out. This type should still work but look for the

Issues mentfioned previously.

Figure 80 - Different Types of Solder Joints

1.8 Expansion Capabilities

Since the i281e CPU works as a computer, there is a world of opporfunities fo expand the
functionality of the design. Keeping this in mind, the i281e CPU hardware feam thought
ahead and left a 24-bif expansion bus and power bus on the boffom right side of the DMEM
Module. This location allows for newly designed modules fo be placed on the right side of
the machine and connected. The signals that are sent out are the DMEM oufput bus, read &

write lines, contral lines C17 & (18, lower bifts of the DMEM address line, clock, and

12&1F S oge |93

demultiplexer select line using the DMEM address line. Figure 81 below shows the
expansion bus and power outputs located on the bottom right side of the DMEM Module.

Expansion Power

Figure 81 - Expansion Bus and Expansion Power

During the design and development of the i281e CPU, some of the group members created
some passion projects fo expand the project beyond the original requirements. One of these
projects was the Mega I/0 Expansion PCB card. This card allows the use of a printer,
speakers, PS2 keyboard, and PS2 mouse. Figure 82 shows the card. This card barely
scrafches the surface of the expandability of the i281e CPU.

o

=
@
2
s
o
=
<
>
o
(C]
]
=
=
S
<

) JESU Mega 1/0
= 12_‘815 Expansion
CIRL O CIRL 1

Figure 82 - Mega I/0 Expansion Module

94 |Page iZElE

1281e
8 Appendix B
Intermediary Design Iterations

Versions considered before client’s specifications have changed
Versions considered before learning more about the project
Versions that resulted in failure to achieve specifications, efc.

Describe why they were scrapped/revised

Page |95

96|Page iZElE

8.1 Design Decisions
8.1.1 TTL Chip Selection

As this project aims fo implement the i281 processor using discrete logic, 74-series chips are
utilized to handle the computational burden. There are three chip choices for TTL-style logic
for the 74-series: LS, HC, and HCT.

The previous project utilized 74LS chips. These are valid chips to be utilized; however, these
are harder to come across and less performant compared fo the following opfions.
Alternatively, there are 74HC chips. These have a high-power requirement and do not match
the pin-out of 74LS chips.

Our team decided on using 74HCT chips. These are cheaper, easier fo obtain, and match the
pin-out of 74LS chips. If we need to prototype a CPU component while waiting for our
74HCT chips, there are spare 74L5S chips courtesy of the previous project. This will allow us
to produce a breadboard component sooner and we can swap out for the 74HCT chip when

testing.

8.1.2 Design Layout

For the breadboard design, it should be known that an 8-bit 2-1 multiplexer circuit takes up

an entire breadboard (63 columns, 8 rows). This is the smallest CPU component that will be
built. Since there are approximately 8+ multfiplexers, we already consume 8+ breadboards.
For larger CPU components, at least 3 breadboards may be needed up to 8. To compensate,

50 breadboards were ordered for this project.

Given the context, the i2871 processor on breadboard is a colossal project that will cover an
entire fable. As seen with the previous project, they affempted to compact the processor by
consfraining it fo a single breadboard surface with wires going everywhere. This is not

sustainable for maintenance and debugging.

Rectifying this problem, all breadboard CPU compaonents will be built info “islands.” These
Islands must be connected through a ribbon cable which will act as a bus data line (up fo 8
bits). This resolves our issue of maintaining a large processor by manually separating the
components and requiring loose coupling. Unfortunately, we will need to use more
breadboards and more table space. The trade-off has been considered acceptable

regardless.

8.1.3 Read/Write of RAM

The original i281 design was built using Verilog for FPGA devices. As such, certain

constraints could be ignored One of these major consfraints was reading and wrifing fo

izglE Page |97

RAM in a single clock cycle. Nearly all RAM on the markeft is considered “single-port” RAM.
The data lines for reading and writing are on the same pins of the IC. Given this restriction,
reading and writing to RAM must be performed in two separate clock cycles which conflicts
with the requirements of the project. This only occurs if RAM passes an instruction that

would alter the contents of RAM in the same cycle.

Miftigating this dilemma started with separating what is permitted during BOOT and RUN.
The primary decision was to remove the ability fo modify RAM while in RUN mode. While
self-modifying code is permitted in cerfain scenarios on other processors, sald processors
may fake mare fime to operate single instructions thus avoiding single cycle read/write. For
our design, BOOT will run from ROM exclusively and write user programs (and any additional
instructions) 1o RAM. Finally, RAM will operatfe as a “read-only” while we are currently in
RUN mode.

8.2 Boot Sequence Discussion

When a processor is powered on, it doesn’t go from a powered-off state to running
instantaneously. A process exists to begin execution of user operations as soon as the
device is ready. Unforfunately, simulafions of the i281 processor ignare this circumstance

and immediately begin executing instructions without hesitation.

Rectifying this problem spun about the idea of banking/partitioning example programs info
the ROM and allowing for quick handling of example programs and provide a way for users
tfo manually enter programs by hand if so desired. This solution was not perfect for the
client as the RAM chip was heavily underused.

The current solution is fo include a “hard disk” (separate ROM, hereby User ROM) per the
request of the client that will contain any premade programs that can be loaded info RAM af
bootf. The bootf sequence will start with reading the first five (SW4-SWO0) swiftches to
defermine what program to load in from User ROM info RAM. If a program needs to load

another secfion info RAM, an insfruction will jump back to ROM and load the next sequence.

8.2.1 Dismissal Reasons

While this in-theory would work, the averarching design is now different in the final design
starting from breadboard implementation’s second design iteraftion. The “hard disk” of the
final design is now the compact flash memory. This is infertwined with DMEM data paths

and new opcodes fo be fully accessible and confrolled by soffware, not hardware.

98| Page 1281E

9 Appendix C
Other Caonsiderations

Any miscellany you deem important, what you learned, anything funny, anecdotfes from

your project experience.

izglE Page |99

9.1 Design Definitions
In addition to all the ferms and acronyms listed throughout the document, these definitions
or additional acronyms are infended for this appendix specifically and do not have any

meaning in the grander document.

9.1.1 Breadboards

A “breadboard island” is a CPU component that is completed on breadboard and is isolated
from ofher CPU components. The only way for logic/data to leave these boards is from bus

data lines.

Alternatively, the name “module” can be used to describe the same element; however, this is

fypically used for the PCB implementation.

9.1.2 Scoping

There are two tfypes of “scope”: global and local.

Global scope, or globally scoped, mandatfes the requirements across all breadboards or PCBs
of a particular component, wire, etc. For example, if a wire is globally scoped, it should be
the only wire color used for a particular case in all scenarios regardless of breadboard or
PCB.

Local scope, or locally scoped, does not mandate adhesion fo a parficular requirement but

gives sfrong preference on to how it should be used in the project. Far example, if a wire is
locally scoped, it should be leff fo the discrefion of a board upon which usage it should fall
under. Once more, It Is strongly recommended that the suggestions given be used unless

otherwise needed.

100|Page iZElE

9.2 Breadboard Wiring Standards
9.21 Wire Color Scheme

Through the usage of a 6-color wire spool sef and two separate colors, the following wire

colors must generally represent the appropriate usage on a breadboard.

Black
Purpose: ground (GND)
Scope: global

Standard color choice. Black is specifically reserved
for ground only. This should be used for jumpers fo
the ground line in a breadboard or across breadboards.

Red
Purpose: +5V power line
Scope: global

Standard color choice. Red is specifically reserved for
power (+5V) only. This should be used for jJumpers o
the power line in a breadboard or across breadboards.

Blue
Purpose: data line, primary
Scope: global

In all other cases where infarmation being transferred
across a component isn’'t an address or confrol line, the
line is considered data.

Green
Purpose: address line
Scope: global

Processor addresses will be illustrated as green wires
when known. When uncerfain, use appropriafe

—
—
—
—

alternate color (data line(s)).

iZElE Page |10

Yellow
Purpose: control line, clock pulse
Scope: global

Canfrol line jumpers are indicated using yellow. A
separate cable may be used o carry more than one
line but must be indicated as such.

White
Purpose: data line, secondary
Scope: local

In cases where a significant number of blue wires
would be used for data, white wire may be used to
help alleviate eye strain.

Orange
Purpose: data line, ternary

Scope: local

Typically used as a datfa line in the Register File, the
wire may be used for the clock line in debugging fo
differentiate between confral lines.

Purple

Purpose: datfa line, ternary
Scope: local

Typically used as a datfa line in the Register File, the

wire may be used for confral lines.

102|Page izglE

Gray Ribbon Cable

Purpose: bus datfa line

Scope: global

Data fransfer between breadboard islands. Measure

between islands and cut with reasonable slack.

—

9.2.2 Connector for Bus Data Lines

Pin Description
DO-D7? Datalines 0-7
GND Ground

The primary indicafor for the connector is that the zeroth bitf line (non-gray wire) must be on
the right side of the connectar when facing the i281 processor. Alternafively, when viewing
the breadboard implementatfion, the non-gray side must point/face toward the right side of

the machine.

If uncertain what direction the breadboard implementation should face, ensure the positive
line is north (from perspective) and all numbers are readable. From there, east is the

direction the cables should face when plugged info breadboards.

izglE Page [103

9.3 Visualization Standards

An initial 6 colors were purchased for the 1281 CPU. There are two setfs of standards enacfed
for the project: breadboard and PCB. Ultimately, the PCB standard is considered “de facto”
and the breadboard standard remains a legacy component to befter understand the original
implementation. Fufure implementations, either breadboard or PCB, should exclusively use
the PCB standard.

9.3.1 Breadboard Visualization

Orange
Purpose: register storage
Scope: global

Meant to exclusively be used for representing what is
currently stored in the individual registers of the
Register File.

Red
Purpose: instruction representation
Scope: local

Can be used across several modules fo represent a
range of bifs from the insfruction output.

Blue
Purpose: apen
Scope: local

No reservation for this color. Primarily used as the
oufput of the ALU.

104|Page iZElE

Green
Purpose: program address
Scope: global

Greenis the representation of the program address
across all CPU components.

Yellow
Purpose: control line indicator
Scope: global

A yellow LED is meant to indicate the assertion of a
control line at both the source (instruction decoder)

and destination (multiplexer, ALU, efc)

White
Purpose: flags register
Scope: global

Meant fo visualize a given flag value for the ALU.

iZElE Page |105

1.2.2 PCB Visualization

Orange
Purpose: latching signals
Scope: global

Represents a 4-bit or 8-bif value stored using a
latching register (usually octal latch) chip. Heavily
represented for the Register File.

Red
Purpose: transient signals
Scope: global

Represents signals that are not meantf fo remain upon
the following instruction. This color may also be used
as an indicator light, primarily power or CF activity.

Green
Purpose: program address
Scope: global

Exclusively used for the program countfer and front
panel. Represents the current or next program
address in relaftion fo ROM/RAM address.

Yellow
Purpose: control path signal
Scope: global

Blies Jie= Jie=

Represents a control path signal in the respective
module or on the control table module. A lit LED
confirms the asserfion of a confrol path signal.

106|Page 1281E

10 Appendix D
Soffware and Hardware Resources

i281E Page [107

10.1 Software Resources

The technical lead, Gavin Tersteeq, has compiled a large collection of homebrew software
(including DOS/281) on his personal GitHub repository: hitps://github.com/tergavi7/i281-dev.

10.1.1 Third-Party Software

While the project is fully capable of standing on its own, several pieces of software were
used in the designing process of the project alongside day-to-day debugging and
development.

Software Usage Link

GitLab Version Control https://about.gitlab.com/

Google Drive Documentation https://drive.google.com/

Inkscape Branding/Diagrams https://inkscape.org/

LibreCAD CAD https://librecad.org/

KiCad Schematic/PCB Development | hifps://www.kicad.org/

Microsoft Documentation/Budgeting https:.//www.office.com/

Office365

Python Programming Language https://www.python.org/

Tera Term Serial Terminal for i281e https://teratermproject.github.io/index-en.htm|
Visual Studio Script Programming https://code.visualstudio.com/

Code

Xgpro EEPROM Programming http://www.xgecu.com/EN/download.html

10.2 Hardware Resources

Additional hardware resources regarding the mounting hardware and DXF files are located

on Daryl Damman’s personal GitHub repasitory: hifps://github.com/brandidamman/i281-

hardware. The repository houses all the necessary DXF files for water/laser cutting

polycarbonate/acrylic panels for both breadboard and PCB implementations.

https://github.com/tergav17/i281-dev
https://about.gitlab.com/
https://drive.google.com/
https://inkscape.org/
https://librecad.org/
https://www.kicad.org/
https://www.office.com/
https://www.python.org/
https://teratermproject.github.io/index-en.html
https://code.visualstudio.com/
http://www.xgecu.com/EN/download.html
https://github.com/brandtdamman/i281-hardware
https://github.com/brandtdamman/i281-hardware

