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Table of Acronyms 
Acronym Name 

ALU Arithmetic Logic Unit 
BB Breadboard 

BIOS Basic Input/Output System 
BOM Bill of Materials 

CMEM Code Memory 
CPR E Computer Engineering 
CPU Central Processing Unit 
DIP Dual Inline Package 
EE Electrical Engineering 

DMEM Data Memory 
EEPROM Electrically Erasable Programable Read-Only Memory 
EPROM Erasable Programable Read-Only Memory 

ETG Electronics and Technology Group 
FPGA Field Programmable Gate Array 

FR Functional Requirements 
GND Ground 
HC High-Speed CMOS 

HCT High-Speed CMOS with Transistor-Transistor Logic Voltages 
IC Integrated Circuits 

IEEE Institute of Electrical and Electronics Engineers 
LED Light Emitting Diode 
LS Low-Power Schottky 

LSB Least Significant Bit 
MSB Most Significant Bit 
MUX Multiplexer 

PC Program Counter 
PCB Printed Circuit Board 
PWB Printed Wiring Board 
QR Quantitative Requirements 

RAM Random Access Memory 
ROM Read-Only Memory 

SR Qualitative/Subjective Requirements 
SW Switch 
TTL Transistor-Transistor Logic 

Table 1 - Acronym Definition List 



P a g e  | 7 

1 Introduction 
The i281e CPU team is composed of three electrical engineering and two software 
engineering students (see Table 2).  Throughout the last two semesters, we have 
accumulated a wealth of knowledge and skills from designing and developing a finished 
i281e CPU prototype.  This document marks the design journey and the final details of the 
project as outlined by the requirements of the Senior Design 492 class. 

Primary Degree Member Name 
Electrical Engineering Logan Lee 

 Braxton Rokos 
 Grant Nordling 

Software Engineering Gavin Tersteeg 
 Daryl Damman 
Table 2 – i281e CPU Member List with Majors 

1.1 Historical Context 
In 2018, Dr. Alexander Stoytchev and Kyung-Tae J. Kim began development on a MIPS-
based, single cycle processor that could be taught in CPR E 281 (now CPR E 2810).  By 
Summer 2019, a finished implementation of the processor was developed for the Altera 
DE2-115 FPGA boards.  Curriculum was written for the following Fall semester.  During the 
Fall 2019 semester, the i281 CPU was unveiled to the class to show the culmination of the 
skills learned throughout the semester. 

In Fall 2020, Dr. Stoytchev submitted a project proposal for Senior Design to develop a web 
simulation of the i281 CPU.  This simulator would make interacting with the processor 
significantly easier, especially if Altera boards were inaccessible or otherwise occupied by 
other students.  A group of six students were formed into sdmay21-38 to develop the web 
simulator (see Table 3 and Figure 1). 

Primary Degree Member Name 
Computer Engineering Aiman Priester 

 Eric Marcanio 
 Bryce Snell 
 Brady Kolosik 
 Jacob Betsworth 

Software Engineering Colby McKinley 
Table 3 - Former i281 Web Simulator project members 
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Figure 1 - i281 CPU Web Simulator 

The i281 CPU is still taught in CPR E 2810 classes to this day; however, it has a far grander 
potential waiting to be possessed.  Was it possible to simply produce the i281 CPU into a 
physical device?  In Spring 2022, another Senior Design team (sddec22-20) was formed.  An 
effort was made to take the original design of the i281 CPU and produce a physical device.  
The goal was to make a breadboard version first to ensure logic was correct and sound. 

Primary Degree Member Name 
Software Engineering Saffron Edwards 
Electrical Engineering Joseph De Jong 

 Alex Kiefer 
 Patrick O’Brien 

Computer Engineering David Vachlon 
Table 4 - Former i281 CPU Hardware Implementation members 

Unfortunately, time was not an ally with the previous team and while a breadboard 
implementation was finished by December 2022, it had some fundamental flaws that 
hindered it from going further. 

1.2 Problem 
The overarching goal for the project, as declared by the project name, is to provide a physical 
hardware implementation of the i281 processor without the use of an Altera board, and 
further, any FPGA-based platform.  This implementation will make use of concepts from our 
classes about electronics circuit design, digital logic, and PCB design. 
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Our primary vision for this project is to be used as an extended teaching tool for CPR E 2810 
to represent the operations of the processor better both physically and visually.  As seen 
with the Altera board, internal registers and calculations weren’t visible for students to view 
and the online simulator is pure software lacking a physical device to tactilely interact upon.  
Students would benefit greatly from a more detailed examination of the internal workings of 
the processor. 

Alongside being a teaching tool for CPR E 2810, the final objective would be to introduce the 
final product as the primary processor for junior and senior students in CPR E 4810.  This 
would expand upon the processor design and allow students to fully explore modifying 
architectures and developing applications/peripherals for processors in a simplified manner. 

1.1 Intended Users and Usage 
There are three groups that would be considered intended users: 

• Dr. Alexander Stoytchev and CPR E 2810/4810 teaching staff 
• Sophomore students in CPR E 2810 
• Junior and senior students in CPRE 4810 

1.1.1 Teaching Staff 
The project must be accessible to teaching staff for both CPR E 2810 and 4810 through both 
design choices and documentation.  A comprehensive archive of source files regarding 
schematics, PCB designs, CAD work, custom software, and documentation for using all 
aforementioned components must be made available. 

1.1.2 CPR E 2810 Students 
It is assumed that the earliest students of CPR E 2810 will be sophomores with minimal 
background to digital logic.  As such, the design of the i281e CPU must be accessible.  This 
means the product must be thoroughly labeled and step-by-step guides be written.  The 
students will interact with the product as if it were an Altera board but have far more 
flexibility in interaction methods. 

1.1.3 CPR E 4810 Students 
It is assumed these students have already taken both CPR E 2810 and 3810.  These students 
will have a deeper understanding of both digital logic and microprocessor design.  While the 
product must be thoroughly labeled to aid with debugging for these students, the primary 
focus would be to extend the architecture and peripherals of the current design.  Advanced 
documentation must be accessible for the students to learn finer details about how the 
expansion bus works, file system design, and to change the instruction set. 
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These students are also expected to be capable of replacing components and interfacing 
their own solutions into the design.  Breadboard and PCB solutions must be compatible with 
each other. 

1.2 Previous Work and Considerations 
As mentioned in the subsection regarding Design Complexity, a homebrew computing kit 

exists on the market to build 8-bit retro computers through Ben Eater’s 8-bit Computer kit1.  
Table 5 provides a non-comprehensive side-by-side comparison between Ben Eater’s 
computer kit and the i281e CPU design as developed by our team. 

Ben Eater’s 8-bit Computer i281 CPU 
Comprehensive build kit, costs $315 Chips must be purchased and sourced 

individually.  Will cost over $315 
A full walkthrough of how the CPU works 
and performs shown in a video on Ben 
Eater’s channel.  

The FPGA and simulator created for the 
CPRE 281 class with lecture slides on how 
the CPU works. 

Uses 74LS series chips. Uses 74HCT series chips. 
Has hidden fees for equipment not included 
in the kit. Ex. Oscilloscope, Multimeter, etc. 

Equipment is provided by ETG and Iowa 
State University. 

Table 5 - Comparison Between Ben Eater's CPU and the i281 CPU 

As noted in the historical context, a previous team attempted to implement the i281 CPU in 
hardware once before; however, were unable to do so.  Our goal is to leverage insights and 
challenges found from the previous team into our design considerations and development.  
Our timeline also encompasses the second phase of the project, focusing on designing and 
producing PCBs using KiCad.  While the previous team were unable to design PCBs before 
the end of the project, our team has been able to successfully develop multiple iterations of 
PCBs to showcase the computer's processes, serving as an educational tool that is robust 
and less prone to mechanical failure. 

To learn from the previous team's experience, our approach involves categorization, general 
organization, and careful consideration of the intricacies that the previous team found 
challenging.  To maintain constructive feedback, Dr. Stoytchev provided remarks on what 
worked and didn't work in the last project, offering valuable insights without denigrating the 
efforts of the previous team. The prior project faced challenges, resulting in a non-functional 
breadboard computer due to design inconsistencies and insufficient circuit care. 

 
1 https://eater.net/8bit/kits (accessed Dec. 03, 2023). 

https://eater.net/8bit/kits
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2 Design 
2.1 Engineering Standards 
The i281e CPU does not adhere to many modern-day standards and practices as the 
technology used for the project is rooted in the early days of electronic computing.  The 
standards chosen for this project are described by the Institute of Electrical and Electronics 
Engineers (IEEE) to help us consider design choices and improve development. 

• IEEE 162-1963 
o IEEE 162-1963 describes the standard definitions and terms for digital computers.  

As the project is intended to be educational, using the appropriate terminology for 
digital computing and related components is paramount for a comprehensive 
curriculum.2 

• IEEE 370-2020 
o IEEE 370-2020 describes a standard for predicting electrical characteristics on 

printed circuit boards and other related interconnects at frequencies up to 50 GHz. 
This is relevant to our project because we will need to handle signals running at 
up to 1 MHz on our printed circuit boards for the final product.3 

• IEEE 2716-2022 
o IEEE 2716-2022 provides a guide for characterizing the effectiveness of printed 

circuit board level shielding. In our project, we will have a dozen or so PCBs all 
connected with discrete cables. We will need to take shielding into account, so we 
don’t encounter noise-related problems.4 

• IEEE 696-1983 
o IEEE 696-1983 describes a computer bus architecture for 8-bit computers running 

at TTL logic levels. Knowledge of how to avoid signal noise, arbitrate device 
access, and distribute power to all subsystems will come into use for our own 
project.5 

 
2 "IEEE Standard Definitions of Terms for Electronic Digital Computers," in ANSI/IEEE Std 162-1963 , 
vol., no., pp.0_1-, 1963, doi: 10.1109/IEEESTD.1963.120147. 
3 "IEEE Standard for Electrical Characterization of Printed Circuit Board and Related Interconnects at 
Frequencies up to 50 GHz," in IEEE Std 370-2020 , vol., no., pp.1-147, 8 Jan. 2021, doi: 
10.1109/IEEESTD.2021.9316329. 
4 "IEEE Guide for the Characterization of the Effectiveness of Printed Circuit Board Level Shielding," in 
IEEE Std 2716-2022 , vol., no., pp.1-46, 29 May 2023, doi: 10.1109/IEEESTD.2023.10136540. 
5 "IEEE Standard 696 Interface Devices," in ANSI/IEEE Std 696-1983 , vol., no., pp.1-40, 13 June 1983, 
doi: 10.1109/IEEESTD.1983.81971. 
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2.2 Requirements 
Requirements are split into three categories: functional and non-functional, where 
qualitative (subjective) and quantitative requirements fall under non-functional.  These are 
denoted as functional requirements (FRs), qualitative requirements (SRs), and quantitative 
requirements (QRs). 

Alongside the design requirements, there were a few design constraints from the original 
design parameters. 

2.2.1 Functional 
Req. # Requirement Description 

FR-1 CPU clock must permit stepping through instructions and operating at a 
specific range of frequencies 

FR-2 CPU must allow writing custom programs via interface panel 
FR-3 CPU must allow loading example programs from the Boot Hard Disk 
FR-4 CPU must be capable of playing a version of the i281 PONG example program 
FR-5 Instruction decoding must handle active high and low signals 
FR-6 All internal storage and calculations must be visualized through LEDs 
FR-7 CPU booting must appear instantaneous to students 
FR-8 CPU execution must allow for single-instruction or continuous execution 
FR-9 CPU must allow loading example programs from ROM 

FR-10 EEPROMs must be used for the control line logic 
Table 6 - Functional Requirements 

2.2.2 Non-functional 
2.2.2.1 Qualitative/Subjective Requirements 

Req. # Requirement Description 
SR-1 Data bus cables must be clearly labeled 
SR-2 Data bus cables must have the zeroth bit on the right-hand side 
SR-3 EEPROMs must be either the same chip or hot-swappable 
SR-4 RAM chips must be either the same chip or hot-swappable 
SR-5 Visualization for the current address (program counter) must be one color 
SR-6 The project must be aesthetically pleasing and attractive 
SR-7 CPU must be explainable to CPR E 281 students 
SR-8 CPU must be capable of being modular 
SR-9 Any implementation (breadboard or PCB) must be interchangeable 

SR-10 CPU must be readable from one viewing direction 
SR-11 CPU must be fully labeled 
SR-12 CPU design must be as close as possible to the original Verilog design 
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SR-13 Bus entry and exit need to be clearly labeled with direction and connection 
type 

SR-14 LEDs and related visualizers must be color-coded 
SR-15 Singular direction (northern indicator) must be standardized and rigorously 

followed for all CPU components and visualizers 
SR-16 A standard cable and LED color code must be used to distinguish  

Table 7 - Qualitative Requirements 

2.2.2.2 Quantitative Requirements 
Req. # Requirement Description 

QR-1 RAM must hold at least 64 words/instructions 
QR-2 Program addressing must be at least 6 bits 
QR-3 Visualized binary data must be represented in 2’s complement by reading the 

most significant bit (MSB) on the left to the least significant bit (LSB) on the 
right 

QR-4 CPU must achieve 1MHz clock speed on PCB implementation 
Table 8 - Quantitative Requirements 

2.2.3 Design Constraints 
The constraints of the original design have been updated to be more descriptive and 
representative of limitations of both the breadboard and PCB implementations. 

Req. # Requirement Description 
C-1 Both ROM and RAM must use Big Endian 
C-2 All breadboards and PCBs must be labeled 
C-3 All modules must be constructed using continuously obtainable components 
C-4 Modules should be electrically self-contained to show logical separation 
C-5 All instructions must be able to execute in a single clock cycle. 

Table 9 - Design constraints 

2.3 Security Concerns 
Security is not a concern for this project.  While we have made considerations about security, 
none were implemented for the sake of project complexity and the lack of requirements.  
Security features and further considerations will be a topic in the far future for students 
examining the hardware implementation of i281e processor.  Additionally, no security 
testing was performed on either breadboard or PCB implementations. 

As of now, our project's primary focus has been on functionality, performance, and design 
optimization. Security testing, while crucial, was not within the scope of our current 
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objectives. However, it remains a critical aspect to address in future iterations or related 
projects to ensure robustness and resilience against potential vulnerabilities. 

2.4 Design Complexity 
The i281 processor is more complicated due to the design choices made compared to modern 
processors.  It utilizes a variety of TTL-style logic chips to provide a multi-use execution 
environment.  There are numerous components to the full processor of which most are 
present on modern processors: 

• ROM w/ BIOS 
o This represents where the processor will begin executing instructions, dictating 

start up procedures and beyond. 
• User RAM 

o Programs are loaded into RAM via BIOS startup or program request.  These 
programs will operate the CPU once the ROM has completed its instruction set. 

• Register File 
o Handles intermediate volatile memory to store results from the ALU, Data 

Memory, or instruction immediate values.  
• Arithmetic Logic Unit (ALU) 

o Performs the basic arithmetic for instructions via data stored in the Register File. 
• Program Counter 

o 8-bit program counter that only uses the lower 7 bits to indicate where in 
instruction memory the processor is currently executing from. 

• Data Memory and Video Card 
o Outputs data from the Data Memory onto eight seven-segment displays. Each 

segment of each display must be individually togglable to allow more complicated 
programs.  

Beyond the CPU components, there are also complex tasks of handling items related to the 
components. 

• Data Bus 
o Connects component to component in a cleaner and easier to read method. 

• Visualizations 
o Individually represent signals and individual bits in registers. 

These components do not match or exceed modern solutions.  Modern processors are built 
on silicon chips through lithography, ion doping, electroplating, and etcetera.  These 
processors can and will perform far better in all capacities compared to our project.  While we 
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cannot match or exceed modern solutions, the project trumps complexity of a modern 
processor by being built on breadboards using integrated components (ICs) and wiring 
rather than being a design on a computer that will be sent to a manufacturing facility. 

2.5 Design Iterations 
Several design decisions and milestones were held throughout the product lifespan leading 
to a primary design and an extended version. 

The original i281 design showed theoretical promise but required adjustments for practical 
implementation.  Not all elements from the simulator or FPGA design could be directly 
translated into ICs.  Due to the project's limited timeframe, we streamlined the design for 
efficiency and ease of testing, focusing on chip efficiency.  This involved evaluating the 
balance between component complexity and functionality, ensuring alignment with project 
objectives, and staying within scope and timeline constraints. 

2.5.1 Design 0 — Original i281 CPU Design 
2.5.1.1 Design Visual and Description 

 
Figure 2 - i281 CPU Simulator Design 

The i281 CPU design simulator is depicted above. This design encompasses Design 0 as it 
was given to us by the client. This includes a BIOS, Code Memory, Program Counter, Opcode 
Decoder, Control Table, Data Memory, Video Card, Register Files, Arithmetic Logic Unit, Input 
Switches, and Flag Register Files. 
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2.5.1.2 BIOS 
In the original design, a “loader program” (or BIOS as it is called) was provided to allow users 
to enter programs into RAM through the interface panel switches (SW15-SW0) depending on 
switch selection at boot.  Alternatively, an example program would be stored in the second 
half of code memory and the BIOS would jump to the active program segment. 

2.5.1.3 Code Memory 
Code memory was a 16-bit memory storage solution that contained up-to 128 instructions 
which were separated in half.  The upper half is dedicated to a BIOS and the lower half to the 
actively used program memory that could be modified while execution was occurring. 

2.5.1.4 Register File 
The register is responsible for holding data for usage by the ALU. In a modern computer, this 
is like the code memory component; fast memory for storing the data the computer is 
actively using. The block of this design can be seen in the two figures below. The register 
takes many inputs to perform its purpose. The data line, 8 bits, feeds into the register file 
from a mux, allowing the location to come from the code memory, ALU, or data memory. The 
register file also has seven dedicated control lines: the write location, write enable, read 
select one, and read select two. 

Since the data line is sent to all four register files, the write enables and location is used to 
only update the correct register file: A, B, C, or D, when desired. A decoder with enable was 
used to send the write enable line to the corresponding register file. There are two read-
select addresses with two bits each, allowing the register to output two different or the same 
registers on the two output buses.  

 
Figure 3 - Register Block from Simulator 
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Figure 4 - Register Block from Simulator 

Each of the register files is made of the schematic seen below. These use a D flip-flop with a 
mux to ensure the bit is stored until written to use the write enable. Each register file has the 
same schematic with different write enable and output bus locations. 

 
Figure 5 - Register File from Simulator 

 
Figure 6 - 8-bit 4-1 Mux 

An 8-bit 4-1 mux manages the output of each two-output bus. These are made using 8 4-1 
mux with the small selection wires.  

2.5.1.5 Arithmetic Logic Unit 
For Design 0 of the Arithmetic Logic Unit (ALU), we were given an initial design that was used to 
create both the simulator and the FPGA design. As we can see from the image below, the ALU 
contains a few subcircuits: the 8-bit shifter, 8-bit adder, a few multiplexers, and a flag calculator. 
For our design, we will also be adding the flag registers as part of the ALU design which is just a 
4-bit register file. The design employs three control signals. Two of the control signals are labeled 
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ALU_SELECT0 and ALU_SELECT1 in the picture and they determine the output of the ALU (the 
second picture shows the different combinations that lead to different opcodes). The third one is 
to control the flag register. This design will output one 8-bit bus (ALU_RESULT in the picture) and 
one 4-bit bus (the flag register outputs). The flag register outputs the carry, negative, overflow, 
and zero flag.  

 
Figure 7 - ALU Subcomponents Diagram 

 
Figure 8 - ALU Arithmetic Mode Table 

The 8-bit shifter circuit is capable of shifting a bit either left or right. The ALU_SELECT0 
control signal determines which it goes to. If ALU_SELECT0 equals a logic low, then the 
circuit shifts left and vice versa. The design itself can be seen below. This circuit shows the 
logic that shifts it both left and right depending on the select signal. This circuit has one extra 
output called Shift_Out which goes into a multiplexer in the higher up circuit. It works as a 
carry flag when the ALU_SELECT1 control line is at a logic low. 
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Figure 9 - ALU Shifter Design 

The 8-bit adder/subtractor circuit is capable of both adding and subtracting two 8-bit 
numbers. When the ALU_SELECT0 control line is at a logic low, the circuit is in addition mode. 
When it is at a logic high, then it is in subtraction mode. This circuit is essentially eight full 
adders tied together in a line. This circuit also outputs a carry bit and a negative bit. All the 
output bits labeled S0-7 can be put into an 8-bit NOR to determine if the value is zero. If it is, it 
triggers the zero flag. Lastly, the C7 and C8 carry bits can be put into an XOR to show if the 
circuit has overflowed, meaning the result was too large to fit in the number of bits provided. 

 
Figure 10 - ALU Addition/Subtraction Design with Flags 

 

2.5.1.6 Program Counter 
The program counter design has four main components. The first being a 6-Bit adder with 
one side tied to 6 bits from the Code Memory and the other side having the first bit 
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hardwired as one. The Cin bit is tied to ground. In the second adder, the left side of it takes the 
output of the first adder and the right side takes the lowest 6 bits from the Code Memory 
output. The Cin input is also grounded. Next, the first adder’s output is multiplexed together 
with the second adder's output. The first one is set to output of the MUX once the control 
signal, C2, is set to zero. The second adder’s output moves through the MUX when C2 is set to 
a one. The output of the MUX is then thrown into an 8-bit register file where the data is 
stored. This register is connected to both the clock and C3. The output of the register file then 
goes back into the first adder’s left side and the cycle begins again.  

 

 
Figure 11 - Program Counter Design 

2.5.1.7 Data Memory 
The data memory section is a location to store intermediate information not immediately 
needed in computation. In addition to the 4 bytes of memory that can be stored in the 
register file, the data memory module offers space to store 128 bytes. The information in 
data memory must be loaded into a register before it can be used in other operations. The 
control signals associated with data memory are C16, C17, and C18. C16 controls what signal is 
used as an input to the data memory module. C17 enables writing to the data memory 
module. C18 allows the output of the data memory module to be returned to the register file. 
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Figure 12 - Data Memory diagram from the simulator 

2.5.1.8 Video Card 
The video card allows for the results of computations to be displayed to the user. It does this 
by displaying the lower 8 bytes of data memory on 7-segment displays. The format of the 
output depends on if the user has the “Game Mode” option selected on the front panel. If so, 
each bit in a byte will correspond to a single segment of the 7-segment display. Otherwise, 
the lower 4-bits are converted into hexadecimal and displayed. 

To be practically implementable in hardware, the video card does not directly display the 
contents of data memory. Instead, it acts as a memory mapped I/O device that responds to 
the first 8 bytes of memory. When a write memory occurs in one of those addresses, the 
information is stored both in the video card and the data memory module. Due to this design 
decision, the video card will only update the contents of a cell when a write operation occurs.   

2.5.1.9 Control  
The control lines throughout the computer are defined by the control logic seen in the picture 
below. There are two main sections to the initial design of the i281, the decoder and the 
control logic table. The decoder takes the 16-bit instruction line as an input and outputs logic 
for which operation is going to be completed by the CPU. The control box sets the 
corresponding control lines, for an operation, that are distributed to the rest of the CPU. 
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Figure 13 - Control Logic Blocks 

The OpCode decoder, shown below, ensures that only one operation is active at a time. It 
also shows the breakdown of each bit of the instruction line and how it is used in the 
decoder. The most significant four bits are always used to define the operation, as seen with 
the 4-to-16 decoder. In o-16 decoder. In addition, bits 9 and 8 are sometimes used to decode 
the operation as seen in the three decoders to the right.  

 
Figure 14 - OpCode Decoder Logic 

The 23 operations bits and bits 11, 10, 9, and 8 are passed from the Opcode Decoder to the 
control box to set each control line. The values of each control line is shown in the figure 
below for each operation taking place. The way this implantation works in design 0 is using 
gates to make a Boolean function. 
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Figure 15 - Control Lines Table 

 

2.5.2 Design 1 — Minimum Viable Processor 
Leading into designing a physical hardware implementation, several changes needed to be 
made to the original design.  Additionally, we developed a few standards for the project.  
These standards will not be discussed in full here and instead can be viewed in Appendix C 
(Standards). 

2.5.2.1 BIOS 
The BIOS, which is stored and runs from the ROM, will serve the function of clearing memory 
and setting up the RAM chips for the user before running the main program. The BIOS will 
need to run faster than the main code, as the length of BIOS’ execution would make waiting 
for it too long for a normal user. The BIOS then must decide which program to fill the RAM 
with, determined from the user’s input. After filling RAM and Data memory, the CPU will be 
read for the program to run. 

2.5.2.2 Code Memory 
To avoid issues with needing to modify or load a program in the same chip as the BIOS, a 
ROM and RAM chip will be distinguished.  In addition to containing ROM and RAM, which 
holds the BIOS, Code Memory handles all interactions with program loading and execution.  
Instructions for running the user's program will be stored and executed from the RAM.  This 
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will be filled in with the necessary instructions during boot.  Either the RAM will be filled 
from a storage chip on the device storing sample programs or filled using the switches 
manually (via BIOS loader). 

The size of both ROM and RAM has been extended compared to the FPGA design.  Since the 
code memory will not be implemented as a massive register file, the independent ROM and 
RAM chips will allow storage far beyond the processor’s general capabilities. 

 
Figure 16 - Code Memory Schematic 

2.5.2.3 Register Files 
The register file will be implemented using four 8-bit register chips that will be multiplexed 
between two different sets of 4-1 multiplexer chips.  Additional LEDs will be included 
between registers and output to visualize what is stored and what has been produced as an 
output. 



P a g e  | 25 

 
Figure 17 - Register File Schematic 

2.5.2.4 Arithmetic Logic Unit 

 
Figure 18 - ALU Ports Labeled on Diagram 

Design 1 of the ALU includes the first design of the ALU using 74 series chips and LEDs. The first 
image shown below is of the 8-bit shifter circuit. It uses three SN74HCT257N chips which are 
each four 2-input multiplexers. The first two on the left in the picture take the input from Port A. 
The third multiplexer is where we determine where the shift out bit is determined. The output of 
this circuit is Port C. We also have three filter capacitors to filter out noise. 
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Figure 19 - Initial Schematic Design of ALU 8-Bit Shifter 

The Adder/Subtractor circuit design is created using three CD74HCT86E four 2-input XOR chips 
and two CD74HCT283E 4-bit Full Adder chips. This circuit inputs the ALU_SELECT0 control line 
along with Port A and B. From this circuit we output Port D, an overflow bit, and a carry bit. The 
logic is the same as it was in Design 0, just with chips instead of conceptual design. We also have 
5 filter capacitors tied to both +5V and GND to filter out noise. 

 
Figure 20 - Initial Schematic Design of 8-Bit Addition/Subtraction Component Schematic 
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The last schematic includes the 8-bit 2-to-1 multiplexers (created out of two SN74HCT257N 
chips) that Port C and D feed into and output Port E. Port E is also visualized with eight LEDs 
accompanied by eight 330Ω resistors. Port E is also inputted into CD4078BE 8-bit NOR chip. 
The output of the NOR is wired into the CD74HCT377E register file for the flags. We also 
have another SN74HCT257N 4-bit 2-to-1 multiplexer circuit that takes the shift bit from the 
shifter, the carry bit from the adder, and the overflow bit from the adder. The output of the 
multiplexer goes straight into the register file for the flags. Lastly, the last bit in the Port E 
bus is also tied to the flag register as the negative flag. All the flags are visualized using four 
LEDs accompanied by four 330Ω resistors. The flag register output is labeled Port F. This 
design includes five filter capacitors to reduce noise. Notice the order of the flags on Port F 
as this will be changed in Design 2. 

 
Figure 21 - ALU Flag Registers and Output MUX Schematic 

2.5.2.5 Program Counter 
The program counter was expanded to 8-bits instead of the original 6-bits as seen in the 
i281 simulator. A major factor in these changes is the limited physical parts sold; the adder 
and mux chips are 4 bits each. This allows us to expand to 8-bits without changing our 
design and no real downside. Another benefit of increasing the bit size of the program 
counter is we get more space to store and run programs from 2^6, 64 to 2^8, 256 lines. The 
design greatly benefits from this change without making big sacrifices elsewhere. 
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Figure 22 - Program Counter Schematic 

2.5.2.6 Control Table 
The control logic was changed to use EPROM to convert between the current operation and 
the control lines. The schematic for the design can be seen below. This simplifies the number 
of components in the design well, giving the same functionality. The EPROM is 
programmable, allowing the ability to update the control logic later.  

Since the CPU displays each control line's state at two locations, where it is generated and 
used, we are using a buffer chip. Each chip should only drive one LED, so this buffer is 
required to ensure proper voltage levels in the control lines. 

 
Figure 23 - Control table schematic 
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2.5.2.7 Video Card 
The Video Card was designed to look the same as the simulator and have two different 
functions: normal and game mode. There are not too many differences between the two 
functions, but game mode enables an extra bit and configures the EEPROM slightly 
differently. We used one 8-bit register file for each seven-segment display so the clock could 
moderate the output and the displays wouldn’t change too quickly. We also added two 100Ω 
connected in parallel with the common cathode of the display and ground. This allowed us to 
achieve a total resistance of 50Ω. We had issues with resistance values higher than this as 
with every segment of the display that turns on, the brightness dims. The value of 50Ω 
allowed us to not burn out the displays and get the most brightness on them. This issue was 
corrected for the PCB design. This design also includes a 27C256 EEPROM that takes input 
from the data memory and converts that data into letters, numbers, and symbols and 
outputs the data to the register files. The Video Card also uses a 3-to-8 Decoder to activate 
the enable pin of each of the eight registers. This function allows each register to accept the 
data from the EEPROM at the proper time. Lastly, there is a 8-bit NOR chip that enables and 
disables the decoder depending on input from the DMEM. The picture below shows the 
schematic for the design. The picture below shows the physical implementation of it on the 
breadboards. This design was attached directly to the DMEM, so they acted as a single 
island in the breadboard design. 

 
Figure 24 - Video Card Schematic 

 



30 | P a g e  

 
Figure 25 - Video Card Breadboard Implementation 

 

2.5.3 Design 2 — Improved Breadboard 
Certain components were iterated upon in this second design. 

2.5.3.1 Code Memory 
A visualization panel was added in extension to the component to showcase the current 
instruction and program address. This module is known as the “Debug Module” and attaches 
directly to the Code Memory module. In addition to displaying the current instruction, the 
module can interface with the front panel to provide debugging facilities to the user. It 
accomplishes this by overriding the CMEM instruction output with hardcoded instructions. 
This hardware was used to implement the “Examine” and “Deposit” front panel functions. 

2.5.3.2 Arithmetic Logic Unit 
The image below is the Design 2 iteration of the ALU schematic. It is the combination of all 
three of the schematics seen in Design 1. There are two major changes to the schematic. The 
first one is the order of the output flags. The second is we made an error in calculating the 
overflow bit, so we added an extra 4-bit Adder chip (CD74HCT283E). In addition to the two 
changes, the ALU has been built on breadboards and works as expected. Another smaller 
change to the schematic was that the control signals are now names the same as they will 
be called from the control table. 
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Figure 26 - ALU Subcomponents Final Schematic 

The output flags were rearranged to match the same layout as the simulator version of the 
i281 CPU current supports. Bit 0 is now designated as the zero flag. Bit 1 is now designated 
as the negative flag. Bit 2 did not change and is still the overflow flag. Bit 3 is now 
designated as the carry flag. 

  
Figure 27 - Output Flags on Schematic 

In Design 1, the mistake we made for the overflow bit was we assumed that S7 was the bit 
that would go into the XOR to create the overflow bit. This was incorrect as C7 is not S7. C7 is 
also a bit internal to CD74HCT283E. There are multiple ways to imitate that bit. We had the 
whole design already built on the breadboards and there wasn’t much space to implement a 
large multi-chip solution. Instead, we realized we could use another adder chip, except this 
one would take the same inputs as the second adder chip from Design 1. The only difference 
is that we want to preserve the C7 so that it will output as the new C8 or Cout on the chip. In 
order to do this, we just needed to use one of X7 or Y7 as a logic high and the other as a logic 
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low. This allows that carry bit to flow through. We are unsure if it is the most power efficient 
method of implementation, but for the functionality, it works. 

 
Figure 28 - Adder Circuit Zoomed in on Last Few Bits 

The image below is the breadboard version of the design. Visually, we can see that there are 
a lot of wires going all over the place. This design has so many components and it was very 
difficult to layout. From the image, we can see Port A, B, E, and F. We can also see the flags, 
control lines, and ALU output. The LEDs have the smallest bit on the right and greatest bit on 
the left. 
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Figure 29 - Implementation of the ALU on Breadboards  

2.5.3.3 Writeback Module 
An additional module was added to efficiently write to RAM with the programs inputted from 
data memory. This slot in between the bus that carries the switches to the code memory and 
adds additional function with the help of a control signal C3.  

 
Figure 30 – Writeback Module Schematic 
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The control signal used, C3, is active low in this usage. When C3 is logic high the writeback 
module is in the normal operations and outputs the switches to the code memory. When C3 
is active or logic low the input from port one of the registers is saved in a register, saving the 
high eight bits of the instruction and gets ready to output the entire instruction line loaded 
from data memory to the code memory. Since the input bus from the register file is only 
eight bits, the instruction line has to be split into two parts. The high eight bits are saved in a 
register, and the lower eight bits are passed from the input bus.  

This allows for compact flash modules in the data memory to be utilized to save programs to 
be loaded into the RAM chips. The write back module still allows for the switches to be used 
in their original functionally as well. An user can input programs manually and us 
instructions codes that expect user input. 

 
Figure 31 – Writeback Module Breadboard Implementation 

2.5.4 Design 3 — PCB Revision A 
2.5.4.1 Mainboard 
On the breadboard prototype, the individual modules were interconnected using a large 
amount of ribbon cables. Based on the application requirements, and personal experiences 
using building the prototype, we decided that using ribbon cables was not practical for the 
PCB machine. After several design meetings, we decided to condense all the ribbon cable 
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interconnects onto a single PCB. Each module connects on top of the mainboard PCB using 
2.54 mm pin headers, and buses are routed on the PCB itself. 

To comply with our original design requirements, we added breakout connectors on the 
bottom middle of the mainboard PCB. This allowed for existing PCB modules to be removed 
and be replaced with breadboard versions. With this feature, students would be able to 
make new versions of the PCBs on breadboards, and then connect them to the rest of the 
system using these breakout connections. 

2.5.4.2 Code Memory 
To prepare Code Memory for the PCB implementation, the existing Code Memory module 
from Design 1 was combined with the Writeback module from Design 2. This was done to 
simplify the amount of board needed to produce. These modules are also heavily connected 
in functionality. Overall, this reduced the number of integrated circuits needed to create the 
processor by two. 

It was decided that ZIF (Zero Insertion Force) sockets would be used for the BIOS ROM chips. 
This was done to allow students to change the programming of the BIOS easier without 
risking damage or mechanical wear to the code memory IC sockets. 

Minor changes were made to the schematic after combining the two modules. The power 
bus was included in the schematic, as well as giving each input and output bus a pin header 
to connect to the main board. The schematic is shown in Figure 32 and the PCB model is 
shown in Figure 33. 

 
Figure 32 - Code Memory PCB Schematic (Rev A) 
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Figure 33 - Code Memory PCB Model (Rev A) 
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2.5.4.3 Register File 
The circuitry of the register file was not changed significantly from the prototype module to 
the PCB implementation. Unlike other modules, the register file was not combined with any 
other module and remained as implemented in the original design. Due to space constraints, 
the physical layout of the register file was changed from a horizontal layout on the 
breadboard machine to a vertical layout. This allowed the register file to have a smaller 
footprint while maintaining all the existing visualization LEDs. 
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Figure 34 - Register File PCB (Rev A) 
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Figure 35 - Register File PCB Schematic (Rev A) 

 

2.5.4.4 Arithmetic Logic Unit 
In this iteration of the ALU, we split it up into two different boards. Both were to be used in 
the same slot on the mainboard. For the first version had the legacy functions as the 
previous iterations where it contained four arithmetic functions: shift left, shift right, 
addition, and subtraction. The second version of the design deemed ALU NOR removed the 
shift left function and added a NOR function. Figure 36 shows this updated version. This 
change required two additional chips (Figure 37). Figure 38 shows the schematic of the 
original ALU, but slightly edited for the PCB implementation. Those chances were we moved 
added a 4-bit input pin and consolidated the control line into one 3-bit input pins.  
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Figure 36 - ALU NOR Logic 

 
Figure 37 - ALU NOR PCB Schematic 
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Figure 38 - ALU PCB Schematic 

From the schematic, we were able to create the PCB layouts. In order to make both the ALU 
and ALU NOR versions easy to identify, they have the exact same layout except for the two 
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NOR Chips U12 & U13 and their accompanying capacitors. On the ALU version, it just has that 
section empty. Figure 39 shows the ALU NOR PCB and Figure 40 shows the ALU Version. 

 
Figure 39 - ALU NOR PCB 
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Figure 40 - ALU PCB 

2.5.4.5 Program Counter 
When adapting the Program counter from breadboard to PCB, not much changed with the 
schematic. The power bus was included and the resistors for LEDs were replaced with a 
resistor pack to reduce footprint. After adding layouts to each part and completing in routing 
of the traces the schematic from Figure 41 was implemented into the PCB shown in Figure 
42.  
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Figure 41 - Program Counter PCB Schematic (Rev A) 

 
Figure 42 - Program Counter PCB Implementation (Rev A) 

 

2.5.4.6 Control Table 
The circuitry behind the control table remained essentially unchanged between the 
improved breadboard prototype and the Rev. A PCB implementation. The only major 
circuitry change involved switching out the individual resistors for resistor networks to save 
space. Like the code memory module, it was decided that ZIF socketed would be used for 
each ROM chip, as that is a part that will see frequent insertion and removal. 
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Figure 43 - Control Table PCB (Rev A) 

For the first revision of the control table, we decided against additional inputs for the 
address pins used on the control ROMs. Adding headers for them would have required extra 
pull-up circuitry on the control table, as well as requiring extra connections and wiring on the 
mainboard. Omitting this potential feature reduced the number of points of failure on the 
first revision. 
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2.5.4.7 Video Card & Data Memory 
On the PCB version of the data memory module, it was decided that the video card and data 
memory sections of the original breadboard prototype would be combined into a single 
board. This was done because the two modules share several internal signals that are not 
used anywhere else in the processor. The circuitry for the video card could be piggybacked 
off the I/O signals of the data memory module, therefore reducing the number of total 
connections to the mainboard. 

 
Figure 44 - Data Memory + Video Card PCB (Rev A) 

Like the enhanced data memory module from design 2, several essential I/O devices are 
included on the PCB itself. These devices are the UART and data memory bank register. 
Circuitry for the compact flash interface also exists on the data memory module, but the 
actual connectors for the device were moved to the main board PCB due to space 
constraints. 
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2.5.5 Design 4 — PCB Revision B 
In this revision of the i281e CPU, we made changes to the PCB designs based on our physical 
testing. Some of the errors were simple mistakes and easily correctable. These mistakes also 
led to new versions of the PCBs being manufactured for the final product. 

2.5.5.1 Mainboard 
Since the mainboard was rushed at the end of the order time, we found errors in this board 
that needed to be corrected in revision B. Most of these changes were tested on the Rev A 
boards before implemented on the new PCBs. 

The power circuit had two errors the input barrel jack connector was moved to avoid any 
high power solder joints being too close. The power circuit itself was cleaned up to ensure 
better stability in our output current. This part of the circuit is shown in Figure 45 – Power 
Circuits Errors Rev A.Figure 45. 

 
Figure 45 – Power Circuits Errors Rev A. 

The reset line was not properly attached to the input reset signal due to names being 
different, this was correct in the schematic. Since the game mode signal was not properly 
used in Data Memory this also had to be router to the new heard. Two of the output buses on 
the main board were flipped label wise.  

Additional chips were added under Data Memory allow with resistor and capacitor to 
improve the flash card’s stability when in use. These additional parts can be seen in the 
bottom right of Figure. 
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Figure 46 - Main Board PCB Schematic (Rev B) 

 
Figure 47 – Main Board PCB Implementation (Rev B) 

2.5.5.2 Code Memory 
After Revision A was produced into a physical PCB, we noticed there were two problems 
with the schematic from Rev A. Chip U9, a register, had 5 volts hooked up to the ground 
connection instead of the ground, Figure 48. Also, C1 was misidentified in the schematic as 
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an active low signal, causing the LED to be flipped as expected, Figure 49. These changes 
were fixed on Rev A boards to test functionally and changed in the Rev B version. The 
updated schematic is shown in Figure 50, and the PCB did not change from Rev A on the 
outside.  

 

 
Figure 48 - Code Memory PCB Change 1 

 
Figure 49 - Code Memory PCB Change 2 

 
Figure 50 - Code Memory PCB Schematic (Rev B) 
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2.5.5.3 Register Files 
A number of LEDs had errors in them that affected the cosmetic of Rev A but not the 
functionality of the Register File. This error needed to be fixed, including the control signal 
C10 LED was set up to be active low when it needed to be active high. The two control 
signals, C8 and C9, were flipped, representing the write select address. One of the output 
buses, Port 1, had incorrect LED labeling on the lower 6 bits. These were all corrected in the 
PCB, as shown in Figure 52. 

 
Figure 51 - Register File PCB Schematic (Rev B) 
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Figure 52 - Register File PCB Model (Rev B) 

 

2.5.5.4 Arithmetic Logic Unit 
There were two changes that needed to be made to both versions of the ALU. LEDs and 
signals for C12 and C13 were switched. The symbol for the XOR chip was inaccurate and 
needed to be fixed. This caused the board to need to be rerouted. 

2.5.5.5 Program Counter 
After testing the PCB for the program counter, the PC mux, seen in Figure 53, had the flipped 
inputs. This made it so that the control signal would output the opposite next program 
counter value as expected. This was fixed temporarily in Rev A for testing by adding a chip 
to the back of the board to invert the control signal for the mux chips.  
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Figure 53 - Program Counter Error from Rev A 

The Program counter was fixed for a Rev B by swapping the inputs to U5 and U6. This new 
revision’s schematic is shown in Figure 54, the PCB itself only had internal wiring changes. 

.  

Figure 54 - Program Counter PCB Schematic (Rev B) 
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2.5.5.6 Video Card & Data Memory 

 
Figure 55 - Video Card & Data Memory PCB Schematic (Rev B) 

 

On the first revision of the data memory module, it was found that the circuitry for “Game 
Mode” was not present. To rectify this, an additional pin was added on revision B which 
allowed the Video ROM to be correctly connected to the mainboard signal. 
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Figure 56 - Video Card & Data Memory PCB Implementation (Rev B) 

 

2.5.6 Design 5 — PCB Revision C 
The final design of the project was not completed in time to have a prototype ordered.  
Unfortunately, most of these mistakes/errors found could have been resolved with some 
more time and effort spent toward examining Revision B. 

2.5.6.1 Mainboard 
The inclusion of a capacitor on Pin 20 of the compact flash IDC connector (see Figure 57) was 
intended to be a bulk filter capacitor; however, the design used is fundamentally not a bulk 
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filter capacitor.  Not only does the capacitor need to be polarized, but it must also be 
between +5V and ground alongside additional smaller capacitors to dampen switching 
frequency and PARD noise. 

 
Figure 57 - Inline capacitor for Mainboard 

Revision C should include a proper electrical design for bulk filter.  Current Revision B boards 
can be repurposed by simply bridging the connection using a jumper wire. 

2.5.6.2 Arithmetic Logic Unit 
Something was unfortunately looked past in the ALU during a revision check.  Since there 
are two ALU designs, it was assumed that both designs are modified in tandem; however, a 
simple mistake was made during the modifications from Revision A to Revision B for the 
ALU.  In Figure 58, Pins 8 and 11 are not connected to the adjacent IC.  These wires were 
incorrectly swapped in Revision A but were forgotten to be reconnected for Revision B in the 
ALU NOR version.  For the ALU design, the wires are appropriately connected. 

 
Figure 58 - Missing wire connections in ALU NOR schematic 
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3 Implementation Details 
3.1 Initial Implementation Plan 
Before building any implementation, the simulator’s section had to be mapped to modules 
able to work on the breadboard. This is the most important part of the planning stages, to 
ensure our designs would work before putting everything together. The goals and focus for 
the first semester were to work on the breadboard prototype and get the design working on 
a more modular version before the PCB. The PCB was going to be a goal in the second 
semester after we knew we had a working prototype and design. Although we did not know 
at the beginning how this was going to come together, we understand that a module-
focused design would be the best as a learning tool, and this was initially the goal.  

3.2 Design 
To start implementing the design of the i281 CPU in both a breadboard and PCB 
implementation, we needed to start laying out the individual modules functionally and how 
they interact with each other and the user. The beginning of this work was available in the 
past interactions, the Verilog, and the Simulator implementation. This core was used heavily 
in the Program Counter, ALU, Register File, and MUXs. Having clear diagrams for 
functionality and logic already explained allowed for the logic to be mapped to physical 
chips and schematics to be created. These were some of the first breadboards to be built due 
to the lower initial design required. 

Other modules required for the i281 CPU implementation need to have the purpose 
maintained but method functionality reworked to suit a physical implementation. The 
control table was the simplest of these reworked modules; the individual Boolean logic was 
swapped with the look-up tables type chip. This allowed for the control table to serve its 
function of converting the instruction line to control signals around the machine and 
allowing easy updates to the logic used.  

Two modules needed heavy rework to allow for all the required functionality to be present. 
Code Memory and Data Memory were discussed in depth for a long time as solutions were 
looked for to allow functionality and simply implement and explain to students learning 
about the machine. Since Code Memory was deemed a vital part of any testing occurring in 
the first semester, this was prioritized over Data Memory. 

This process allowed for Code Memory to be implanted with debugging functionally added 
on to ensure the learning tool is the best it can be. The existing BIOS chip seen in simulator 
i281 was split into a set BIOS stored in ROM and user programs stored in RAM. The 
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advantage of this system was that ROM was not easily writeable, but RAM chips were, 
allowing for different programs to be uploaded and run with little delay.  

The minimum viable processor was built in the first semester of our project. This allowed 
testing to be done on most of the breadboard modules and ensured the functionality of our 
design so far. Continuing the work into the second semester was first finishing the 
breadboard implementation. With the plan for Data Memory finalized, the module was built. 
Another module was added to the design to help Code Memory get the user programs from 
Data Memory, the Writeback module. 

While the final breadboard implementation is being thoroughly tested, the focus of part of 
the team moved to starting PCB schematics. These were quite like the existing breadboard 
versions simplifying the design process. The design process for overall PCB functionality and 
appearances was discussed until the main board supported the modules and connected all 
buses through this.  

The first iteration of the PCB modules was created in KiCad and fabricated. With our previous 
work with the breadboard implementation, we were confident in the design of the i281e CPU 
and moved forward with soldering all the various logic chips and LEDs onto the boards for 
testing. After putting them all together, we found various errors in our schematic and PCBs, 
causing reworks to be needed. These were small errors with the PCB that were all corrected 
on the Rev A boards to ensure the board works in theory.  

We started to create a second revision of the PCB modules, Rev B, that fixed our errors, 
allowing for printing future boards. These were ordered to be built and tested again. 

3.3 Functionality 
The i281e CPU is capable of a wide range of functionality since we have built a computer. 
The BIOS we have developed allows the user to control the i281e CPU using a terminal and 
DOS/281 commands. A user can hook up a dedicated terminal using a serial or a laptop using 
USB. This allows freedom in the user options. By using a terminal and command, a user can 
load programs into RAM from a compact flash card that is integrated with the data memory 
or upload their own programs to the compact flash card. This allows the i281e CPU to be 
programmed for a wide range of functions. We have existing programs to show off sorting 
algorithms, do basic math, play pong, and display graphics in the email window.  

The i281e CPU was also made with an expansion bus, adding the ability to add even more 
functionally to the computer. We have already added printing ability. Even more expansions 
can be attached here, like a sound card. 
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The i281e CPU itself is already quite capable as a learning tool. When designing, we were 
hoping to get clock speeds of up to 1 MHz; in testing, we were able to achieve 2.5 MHz and 
remain stable. It currently runs at 2 MHz the fastest normal operation speed. While running, 
we measured the power of the PCB to take 800 mA at 5 V.  

The size of storage in the i281e CPU has also been increased compared to the existing i281 
CPUs. We have 128 words for the BIOS, 32 kilowords for Code Memory’s RAM, and 32 
kilobytes of data memory. The compact flash memory also adds an additional 32 Megabytes 
of storage, like a hard disk. 

The PCB implementation also kept the benefit of the breadboard implementation since they 
are both modular. By taking a module out like a mux, a user can attach an external mux, and 
the entire i281e CPU works like nothing is different. This makes it so that the breadboard and 
PCB implementations are capable of each other.  

3.4 Finances 
During our first semester on this project, we started with a budget of $1000. However, as the 
semester progressed, it became evident that this budget was insufficient, with total 
expenditures reaching $731.44. Recognizing the expanding scope of our project, Thankfully, 
the ETG recognized the project's significance and increased our budget accordingly. 
Nevertheless, we maintained meticulous financial tracking and documentation throughout 
this period. 

Our documentation efforts extended to creating an automated Bill of Materials (BOM) 
system, streamlining the process of cataloging parts and sourcing information. This system, 
derived directly from our schematics, not only facilitated internal organization but also 
served as a valuable guide for potential project replication. 

The breadboard implementation incurred a total cost of approximately $850, encompassing 
expenses related to breadboards, wiring, LEDs, and supplementary components like the 
wooden mounting board. 

However, the PCB implementation mainly involved costs associated with soldering 
components onto ordered boards. While precise tracking of these costs was relaxed 
following the budget adjustment, a rough estimate places the cost of one machine at around 
$400. 

Our progress has been met with amazement from both our client and the ETG. While the 
breadboard implementation served as a valuable steppingstone, it was not an effective long-
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term solution. Instead, it provided crucial insights and experience, laying the foundation for 
the creation of the PCB implementation. 

Accomplishing this transition was imperative not only for our project's success but also to 
provide future students in 2810 labs with a clearer understanding of the requirements and 
challenges they might encounter.  

In summary, our project's financial journey reflects a dynamic adaptation to evolving 
requirements and resource constraints. The transition from breadboard to PCB 
implementation not only optimizes costs but also enhances project robustness and 
reliability, aligning with our goals of efficiency and sustainability. 
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4 Broader Context 
As noted in the project requirements, the i281 processor aims to be an educational tool for 
both CPR E 281 and future classes related to processor architecture.  Our target audience is 
students in the ECpE department of Iowa State University and individuals interested in 
computer architecture. 

The ECpE department is affected economically by our project.  Not only are they the current 
funding source for the senior design project but they will also be responsible for purchasing 
and maintaining the i281 processor’s components when deployed to future labs. 

It will be noted that there is no societal impact or need for this project.  While it is beneficial 
for students to be educated about grand-picture computing, the hardware-based i281 
processor does not provide a significant societal impact to the educational program as seen 
by the team.  This impact may become larger after the development and deployment of the 
hardware-based i281e processor. 

4.1 Identification of New Effects 
As mentioned in section 4.4 of our design document, the primary effect that our project is 
educational. The ultimate purpose of the i281 CPU is to be used as a teaching tool to better 
educate ECpE students on digital logic and computing basics. As we continue to work 
through the design and implementation process, we have been able to identify new effects 
that our project may have on students. 

Originally, the primary goal of our project was to teach CPU architectural basics. Through the 
experience of our own implementation work, we have found that it can be useful for 
teaching other related subjects. As the i281 CPU is built out of discrete logic chips, the 
electrical characteristics of these parts must be considered alongside the purely functional. A 
student working with the i281 platform would get to learn about how digital logic and basic 
electrical engineering intersect to create useful products. 

4.2 Evidence Demonstration of Positive Effects 
Through a classroom setting, the i281e CPU can be used to teach electrical design, computer 
architecture, and assembly software design in a more refined detail than shown in any pre- 
existing class at Iowa State. The processor itself has been demonstrated to show a large 
range of capabilities to ETG and our advisor/client. 

4.3 Justification of Negative Effectives 
The i281e CPU project can be costly to manufacture and implement. Throughout our design 
process, we have ensured that the overall design and implementation are robust and can 
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withstand a reasonable time. Measures have been taken to mitigate the cost of PCBs, 
components, and assembly. Lastly, all implementations are or will be heavily documented to 
ensure future reuse and ease of repairability. 

5 Testing 
5.1 Process 
What’s the overall process of testing? 

5.1.1 Breadboard Testing 
5.1.1.1 Unit Testing 
The i281 project involves building several smaller sub-components that will eventually need 
to interface and interoperate with one another. Instead of building all modules and then 
testing them together as one system, we settled on a strategy of individually verifying the 
functionality of each sub-component before attempting to connect them. This unit-testing 
strategy is done in two stages.  

First, the unit is tested electrically. There are many common mistakes that can be made 
when wiring a solderless breadboard. Before power is applied to the module, the resistance 
between the 5 volt and ground rails is checked to ensure that there are no short circuits. If 
that test is successful, then the power pins on each integrated circuit will be checked to 
confirm that they are on the correct power rail. By doing this, we can be confident that no 
damage will come to the components when power is applied. Finally, once power is applied 
to the breadboard the electrical characteristics are checked. If the voltage is found to be 
sagging, too much current is being drawn, or if chips are getting hot, power will be removed 
and the design to be reviewed for errors. 

After electrical testing is complete, the sub-component is tested logically. To assist us in this 
task, we built testing boards which allow us to run manual test cases for the modules.  These 
“testing rigs” consist of banks of switches and LEDs, so inputs and be manually set and 
outputs and be visualized (See the image below). Using the switches, we can test how the 
circuits react to changes in the switches. By doing this, we can test most, if not all, scenarios 
that the circuit will go through. 
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Figure 59 - Testing Rig 

Assuming all electrical and logical tests pass, the sub-component will be marked “OK” and 
set aside for integration testing with other modules. By performing this process, we will have 
some degree of confidence about the functionality of each module before attempting to 
make them work together in a larger system. 

5.1.1.2 Interface Testing 

In the design of the original i281 processor, there are a few points where the user can 
interact with the state of the machine: 

• The “switch register”, which manually be set by changing a bank of 16 switches. 
• The execution control section, where programs can be stopped, started, and stepped 

through depending on the desires of the user. 
• The “game mode” switch, which changes how the 7-segment displays format 

information. 

These interfaces are adequate for casual users running example programs for educational 
purposes. However, we realized earlier on that we would need slightly more sophisticated 
interface facilities for system and integration level testing. For that reason, we decided to 
combine almost all user inputs, execution control, and debugging options into one module. 
This module, known as the “user panel”, possesses all existing interface options plus a few 
new features meant to assist in system debugging. 
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Figure 60 - User Panel Design 

 

Component Type Description 

Switch Register This is a set of 16 switches at the bottom 
of the user panel. These switches are 
further broken down into two banks of 8 
switches.  They exist as the main way 
that user data can be inputted to the 
processor. The switch register performs 
different operations depending on the 
instruction executing or debugging 
operation selected. 

Run / Halt Switch This is the first switch in the control 
group. It allows the user to toggle 
between automatic and manual 
program execution. In the “Run” state, 
the program counter will be 
automatically incremented depending 
on the configured speed of the system 
clock. When the switch is moved to the 
“Halt” state, execution will indefinably 
pause. In this state, the user is free to 
use any of the facilities in the debug 
group. Moving the switch back into the 
“Run” state will resume program 
execution. 
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Game Mode Switch This is the second switch in the control 
group. It controls how the first 8 bytes 
of data memory are visualized on the 7-
segmenet displays of the video card. 
When the switch is down, the contents 
of memory will be displayed in 
hexadecimal format. When the switch is 
up, the bits of each byte will be mapped 
directly to segment on the display. 

Reset Switch This is the third and last switch in the 
control group. It is used to reset the 
processor state back to the boot state. 
At this state, the processor can be 
booted, or optionally debugging 
operations can be executed. When the 
processor is first powered on, the reset 
switch must be used to put the 
processor into a defined state. 

Single Step Switch This is the first switch in the debug 
group. When the processor is in a “Halt” 
state, strobing this switch will send a 
single clock cycle to the processor. This 
can be used to manually step through a 
program for debugging and educational 
purposes. 

Examine Switch This is the second switch in the debug 
group. It is also the first switch that is 
unique to the hardware implementation 
of the i281 design. When the switch is 
strobed, the contents of the lower 8 bits 
of the switch register are added to the 
program counter, and then incremented. 
This value becomes the new program 
counter. During this operation, the state 
of the other processor components is 
not affected. 
Since the program counter and the 
location in code memory that it points to 
is always visualized, this allows for the 
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contents of code memory to be 
manually checked without executing the 
instructions stored. 

Deposit Switch This is the third switch in the debug 
group. Like the examine switch, it is 
unique to the hardware implementation 
of the i281 design. This switch is 
designed to be used in conjunction with 
the examine switch. When this switch is 
strobed, the contents of the switch 
register are placed in the memory 
location pointed to by the program 
counter. The program counter is then 
incremented by one. 
The purpose of this switch is to allow for 
the manual programming of memory 
without the assistance of the BIOS or 
Boot Hard Disk. 

Code / Data Switch This is the fourth and final switch in the 
debug group. It controls if the deposit 
switch enters data into code memory or 
data memory. 

Table 10 - Switch Types and Applications 

In addition to the front panel, the clock speed can be controlled via the rotary encoder found 
on the clock module. This can be used to dramatically slow down processor execution. 

The main way that the user panel can perform these debugging operations is by “mocking” 
instructions on the instruction bug. The “Examine” and “Deposit” switches work almost the 
same as the “Single Step” switch, except for one key different. When these switches are 
depressed, the code memory module will de-assert the bug, and allow the debugging board 
to assert a single instruction instead. This instruction can be a JUMP, INPUTC, or INPUTD 
depending on the desired operation. When the single step circuity first, this instruction will 
be executed instead of an instruction from code memory. This allows for the debugging 
features to be added to the user panel without incurring much hardware complexity costs.   

Technically, the Boot Hard Disk (BHD) can be swapped out to provide different user/example 
programs; however, this is not considered a traditional interface.  To test the boot procedure, 
we will be swapping programs on the BHD to confirm: instructions load into RAM, critical 
control lines are solid, and operation after boot is as expected. 
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5.1.1.3 Integration Testing 
What are the critical integration paths in your design? Justification for criticality may come 
from your requirements. How will they be tested? Tools? 

Due to the complexity of the i281 design, we figured that attempting to build the entire 
processor and then debug it would be too difficult of a job. To streamline the integration 
process, we decided to build and test a “minimum viable processor” before attempting to test 
the entire system. This minimum viable processor, or MVP, consists of the bare minimum 
required to test processor activity. The MVP consists of: 

• The User Panel 
• The Code Memory Module 
• The Clock Circuit Module 
• The Program Counter Module 
• The Instruction Decoder Module 
• The Register Module 
• The ALU Module 
• Various MUX Modules (Interconnection). 

Importantly, the MVP explicitly excludes: 

• The Data Memory Module 
• The Video Card Module 
• The Boot Hard Drive Module 

By implementing a minimal processor, the critical path of the processor can be tested and 
verified before more complex components are added.  

After the minimum viable processor has been constructed and verified, the rest of the 
system can be put together. This involves constructing and integrating the data memory, 
video card, and boot hard drive modules. These are all complex pieces of hardware, so it is 
important that the rest of the processor is known to be functional before debugging of those 
modules begins. 

5.1.1.4 System Testing 
Each “island” of the i281 CPU needs to be tested independently to ensure the functionality of 
each section. These will be tested for base functionality to prove they were properly built 
and can interface with other sections of the CPU. Testing is completed using an existing 
testing board capable of inputting two 8-bit numbers and outputting an 8-bit number; since 
two of these boards exist, we can test up to four inputs and two outputs simultaneously. We 
also use an Arduino microcontroller for testing purposes that creates a clock signal. This can 
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output a clock signal at any frequency required and a manual toggle clock; for testing, this 
often kept a low frequency so that we can watch individual steps of the component to 
ensure proper functionality.  

When putting the different “islands” together, we will need to test the interconnects of each 
component to ensure the sections are working as expected. Along with individual testing 
when putting “islands” together, we will also need to test the overall operations of the CPU. 
After connecting different components, these integration tests will be completed frequently, 
whenever possible.  

5.1.1.5 Regression Testing 
We are ensuring that new additions do not break the old functionality by ensuring 
compatibility between the new and old components before connecting and running them. 
After they are connected, we can test the functionality of it via the 7-segment displays and 
various other LEDs around the board. This is driven by requirements as one of the project's 
goals is to have a class taught about and around the CPU. The students will then build and 
test their designs with our CPU.  

5.1.1.6 Acceptance Testing 
The first form of acceptance test we must do is check the functionality of the individual 
system modules. Each module has a set of requirements defined by our client. This outlines 
what features the module should have, what parts of the module must be visualized, and 
what implementation strategy should be used. We will check with our client during the 
development and debugging process so ensure that each module meets their requirements. 

After system integration is complete, acceptance testing is done by ensuring that the i281 
CPU can fulfill all the requirements originally set out by our client. The main aspect of this is 
that the system must be able to execute all existing i281 example programs with little to no 
modification. If all example programs can be successfully executed, it is safe to say that the 
processor is in an acceptable state. 

5.1.2 PCB Testing 
 

5.2 Results 
Presuming the system/design/implementation has been tested, what were the results for 
testing?  Did the implementation perform adequately?  What was the coverage? 
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5.2.1 Breadboard Results 
We are testing the sections of the CPU as they are built to ensure they are functional. So far, 
we have built and tested the 8-bit 2-1 mux, code memory, program counter, arithmetic logic 
unit, register files, switch board, and control table circuits.  

The 8-bit 2-1 mux were some of the first components we built for the i281 CPU. Since we had 
no existing testing hardware, we had to make a new testing board capable of proving input 
and output paths to the component. This testing board is used throughout the other 
components to check functionality.  

The 8-bit 2-1 mux was modeled after the picture below, taken from i281 class notes 
explaining how the i281 CPU worked. We ensured each input bit mapped to the correct 
output bit when that signal was active.  

 
Figure 61 - 8-Bit 2-1 Multiplexer Design 

 

When testing the program counter, we initially tried to use a switch as the clock pulse but 
found this unusable without a denouncer. We used an Arduino as the clock for this sensitive 
component to ensure our testing conditions would match the final usage. This will be used 
as the clock in future testing as well. The picture above demonstrates the expected 
functionality of the component. We started by only testing the program counter when c2 = 0, 
increasing the stored number by one each time. This would help us narrow down problems 
in the circuit before adding additional signal paths to the data path. After getting the main 
wires of the output stage into the register correct, we added an offset to the program 
counter ensuring that all functions worked as expected.  
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Figure 62 - Program Counter Design 

Testing the code memory section was done in the same manner that all the other modules 
were tested. The only difference is that two testing modules had to be used to accommodate 
the number of inputs and outputs for the module. All features of the code memory section 
were then manually checked out. This includes reading from RAM and ROM, writing to RAM, 
and different bus arbitration states depending on the input address, program counter, and 
control lines. 

 

 
Figure 63 - Testing Rig Connected to the RAM and ROM 

We tested the ALU in a very similar way. We used one of the testing rigs to hook up to the 
ALU since they were designed to have two 8-bit input buses and one 8-bit output bus. The 
ALU had three control signals, so we connected each of those two by a switch. We also used 
the Arduino Nano clock board to simulate the clock signal in the flag register chip. By 
changing the values of C12 and C13, we were able to switch the mode the ALU was in. We 
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exhaustively tested each mode with multiple different potential inputs. To see if the design 
was working, we looked at the output LEDs. Based on our inputs, we predicted the outputs 
and checked if they matched the LEDs. For the addition and subtraction arithmetic, we used 
inputs from Professor Stoytchev’s CPR E 281 class slides to verify our results. In addition to 
the outputs, we used the slides to check if the Zero, Negative, Overflow, and Carry flags were 
triggered. When we initially tested the design, we found a variety of errors such as an 
incorrect orientation of the output LEDs, incorrect overflow errors, and issues with the shifter 
circuit. These issues were then debugged, fixed, and some led to Design iteration two. After 
the issues were addressed, the design was retested and passed. 

 

5.2.2 PCB Results 
Testing for the PCB model was done in several ways. Since the PCB schematics were based 
on the schematics used to build the prototype unit, the fundamental circuitry behind each 
unit has already been tested. That way, certain points of failure on the PCB implementation 
can be ruled out when debugging. 

In terms of physical testing, the PCB modules were first evaluated the same way as the 
breadboard modules. After each module was assembled, continuity was tested between the 
power and ground plains to ensure that there were no shorts. The +5V and GND pins of each 
chip were also tested to catch any wiring mistakes. Finally, power was applied to these 
boards individually to check power consumption and look for overheating chips as a sign of 
faulty wiring. 
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Figure 64 - Partially constructed PCB machine to test electrical characteristics 

 

Once a module has been confirmed to be electrically safe to work with other hardware 
without risk of damage, the functional components of the module are tested next. Using the 
24 pin IDC connectors found in the bottom-middle section of the mainboard, different buses 
could be connected. By connecting the input and output buses of some modules to the 
switch inputs and front panel output, several modules were able to be tested. The program 
counter was also able to be independently tested by supplying it with a clock signal from the 
front panel. 

Using a multimeter, we also tested individual bus connections between different modules to 
ensure they went where they were on the breadboard prototype. We found several 
connections on the revision A machine that did not match their expected destinations on the 
design document. These issues were fixed in revision B. 

Most of the testing and debugging on the PCB machine occurred when the full system was 
assembled. By doing this, we could attempt to execute simple programs and then compare 
the CPU state to the breadboard prototype and the emulator. Any instruction that failed to 
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result in the correct state was traced back to its corresponding circuitry and monitored using 
an oscilloscope. Using the single step feature on the front panel, instructions could be fully 
evaluated on a cycle-by-cycle basis. 

With most basic instructions confirmed to be working, we were able to use the “Monitor” 
program to continue our testing and evaluation of the PCB machine. The monitor allows for 
memory and program execution to be manually manipulated over the serial UART 
connection.  

 
Figure 65 - Usage of the monitor program to examine portions of memory 

Using the monitor program, it was significantly easier to enter information into instruction 
and data memory. Information input into data memory could also be examined to ensure 
that the memory circuitry was storing and retrieving information correctly. In addition to 
RAM, hardware devices hooked up to the data memory module could also be manually 
interacted with to confirm basic functionality. 

With the monitor program working, this opened the option for test programs to be uploaded 
to the processor over the UART and executed. Many of these test programs were existing 
i281 programs such as bubble sort or the banner program. We also wrote custom unit test 
programs that exercised the ALU and made sure that all flags and outputs were being set as 
expected. 
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Figure 66 - Snippet from ALU unit test program 
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6 Conclusion 
6.1 Progress 
What’s the progress of the project?  Is it fully completed?  Is there more work to be done? 

Our constraints for the project in our goals were our academic and external work.  There 
were technical hurdles with translating an FPGA design into a hardware implementation; 
however, these were minimal and handled in a timely manner.  Physically implementing the 
prototype on breadboard took the most time out of the project. 

6.1.1 Time Spent on Project 
For the second semester of this project, Table is the recorded time of project work within an 
estimate 10% deviation.  Hours were recorded per quarter hour on a periodic basis in tandem 
with our “biweekly reports.”  The total cumulative hours for the semester across all persons 
are 773.75 hours. 

Name Period 01 Period 02 
(est.) 

Period 03 Period 04 Period 05 Cumulative 
Hours 

Daryl Damman N/A 45 14.5 65 80.5 205 

Logan Lee N/A 20 15 41 34 130 

Grant Nordling N/A 7 7 15 14 43 

Braxton Rokos N/A 27 12 37.5 41.25 144.75 

Gavin Tersteeg N/A 30 25.25 80.75 85 251 
Table 11 – Hours toward i281e project for second semester 

Unfortunately, time was not recorded for the first semester of the project.  As such, we can 
only assume that the amount of time spent on the previous semester is roughly 85% of the 
total cumulative hours of this semester, which is approximately 657.75 hours.  This would 
mean that the total cumulative hours are somewhere in the range of 1400-1600 hours. 

6.2 Project Value 
The final version of the i281e CPU we have put together is quite efficient for its usage in the 
classroom and as a learning tool. Throughout our project's design and implementation, our 
client, ETG, and other visitors have been impressed with what we have managed to do.  

When starting this project, we were told to make a physical version of the i281 CPU like the 
existing version in CPR E 2810 slides, a simulator, and Verilog implementation. We took their 
existing work and made an equivalent physical i281 CPU and went above the old capability, 
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making our PCB into the i281e CPU. The base functionality was not comprised in our 
implementation only improved upon.  

The i281e CPU is helpful for students taking CPR E 2810 and can be used further in follow-up 
classes to teach more about the computer system. CPR E 2810 finally has a physical version 
that students can use and learn more from.  

By building a fully modular design, it also allows even more usage than just explaining 
inside of a classroom or lab. Dr. Stoytchev has discussed with us his goals of having an 
additional class that is a follow-up in the sequence to CPR E 2810, like CPR E 4810, that 
discusses the i281 CPU in more depth and even works on building some modules in the lab. 
This shows another advantage of making a breadboard implementation before the PCB 
implementation, as we already have a working version of these for a base of these 
hypothetical labs.  

Overall, this project, the i281e CPU, often gives many educational opportunities for the 
student body to take future computer engineering classes.  

6.3 Future Considerations 
Although we have tried to accomplish everything in our senior design goals, there is always 
more work on this project that can be down. For our process to be utilized effectively in a 
learning environment, the information we have produced about the i281e CPU needs to be 
properly organized and managed. We have done work to help this process throughout our 
time, but it is never complete. A user manual is being written to help future users understand 
how to use and manage our design.  

The PCBs have been designed, and many have been produced for testing, but not all were 
able to be produced, mainly Rev C. There is also software development that can be worked 
on, allowing for more expansion devices to be interfaced with the i281e CPU.  
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7 Appendix A 
Operation Manual 
This appendix provides all necessary information required to fully use, maintain, and apply 
the i281e CPU. Below, each category is split into their respective sections. 
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7.1 Module Layout 
7.1.1 Layout of the i281e CPU 
From Figure 67, we can see the proper alignment and orientation of the modules. Use this 
Figure as a reference to the installation of the modules. When installing the modules onto 
the Mainboard, ensure that the i281e CPU logo is in the bottom left corner. There are 10 
modules on the Mainboard, and 4 of them are the same MUX Module used multiple times in 
different orientations. As a rule of thumb, for all modules excluding the MUX Modules, all the 
module titles silkscreens should be angled the same way as the text on the Mainboard.  

 
Figure 67 - Modules Labeled on i281e CPU 

Additionally, if we look at Figure 67, we can see the layout of the Mainboard. Each of the 
modules has a location designated by the silkscreen. The four holes of the larger modules 
match up with the four holes on the backboards of the desired location. This is where the 
mounting hardware will connect the modules securely to the backboard in addition to the 
Polycarbonate top and bottom covers, as seen in Figure 68. 
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Figure 68 - Mainboard PCB without Most Components 

7.1.2 Mounting Methods 
To safely attach the module to the Mainboard, ensure the mounting hardware is installed in 
the holes on the Mainboard. The mounting hardware is done in a “sandwich” design. 

• Layer 1 
o 1/4” acrylic/polycarbonate panel with screw holes appropriately aligned. 
o There shall be five >10mm rubber feet in cross formation underneath the 

acrylic/polycarbonate panel. 
• Layer 2 

o Mainboard PCB 
• Layer 3 

o Respective modules (REG, PC, DMEM, etc.) will be seated on the pin headers. 
• Layer 4 

o 1/4” acrylic/polycarbonate panel using top panel A or B (see hardware repository). 

In between each layer, there will be respective standoffs and spacers to ensure the 
hardware remains in a soundly rigid fashion.  See Figure 69 for an example of this sandwich 
design put together.  The hardware repository contains information regarding the exact part 
information.  The following steps should be taken for each accessible mounting location. 
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• Layer 1 
o Insert screws with one washer inserted bottom-up with male-to-female standoff 

fastened with the male end facing upward. 
• Layer 2 

o Set the Mainboard PCB on-top of the upright standoffs and fasten two washers 
and a spacer. 

• Layer 3 
o Set each respective module in the correct orientation and fasten male-to-female 

standoffs with the male end facing downward. 
• Layer 4 

o Set top panel A or B and fasten screws with one washer into female receptacle of 
standoff. 

Some PCB modules cannot be attached to the top panel and will need to have a screw with 
washer inserted at Layer 3.  Once the mounting hardware is installed, one can line up the 
corners of the module with the 4 mounts. Take note of the orientation of the module aligning 
it. Once you are ready to attach the module, simply press down on the module evenly. If 
done correctly, all the pin headers should have gone into their corresponding receptors on 
the Mainboard. 

 
Figure 69 - Mounting Hardware 

To safely detach a module from the Mainboard, ensure that the acrylic top sheet is no longer 
attached to the boards and the top 15mm standoff is removed. With an even distribution of 
strength, pull up on the module. The module should pull up without too significant of force. If 
you are having a hard time detaching the module, double check nothing is restricting you. If 
there are no restrictions, hold the module by its input and output header edges and wiggle it 
back and forth until it starts to give way. Be gentle to not bend pins or crack a solder joint. 
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7.2 Power / Power Safety 
One of the most important things to know about the i281e CPU is how to turn it on properly. 
Questions you may be thinking to yourself might be “Do I need to wear an anti-static wrist 
strap?” or “How do I know if the CPU is on?” This section will give you all the answers to 
those questions and ensure that the CPU is not damaged in the process of turning it on or 
using the device. 

An anti-static wrist strap will prevent electrostatic discharge (ESD) from damaging the CPU. 
ESD can damage the IC chips or alter their programming. To prevent damage, always ensure 
that you are grounded prior to touching the equipment, this includes plugging in the anti-
static wrist strap into the designated areas. Most lab tables and desks have ports in them 
that correspond to the pin at the end of your anti-static wrist strap. If your anti-static wrist 
strap has a clip at the end, connect it to something made of metal that is not painted. It is 
preferred that you ground yourself to a table or alternative location, but there are always 
options. When anti-static wrist straps are not provided, this grounding could be as simple as 
touching an unpainted metal object prior to touching the equipment. An anti-static wrist 
strap overall is a simple method to ensure you do not harm the electronics. 

7.2.1 How do I plug the i281e CPU in? 
First, you need to find the power cable and find an outlet to plug it into. The port to plug in 
the power cable is on the top left of the Mainboard. This port is on the underside of the 
Mainboard. With one hand, hold the Mainboard and with the other, insert the plug into the 
port. Ensure that it is a snug fit. 

Second, press the button right next to the port on the underside of the Mainboard. Once you 
press the button, there should be a light blue LED (Rev B) that lights up near the bottom right 
of the mainboard. Once this LED is lit, the CPU is on. Power will be provided to the board and 
the startup sequence for the i281e CPU must be achieved.  

If the LED is not powered on when pressing the button, the plug may not be fully in. Ensure 
that the plug is firmly pressed into the slot.  

 

IMPORTANT: 

When using the i281e CPU, one MUST wear an anti-static wrist strap or alternative ESD 
protection equipment/methods. 
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7.3 Front Panel Usage 
The switches on the front panel are the main tool to interact with the i281e CPU and 
influence its operation. A diagram with the switch layout is shown in Figure 70.  

 
Figure 70 - User Panel Design 

The red switches are used in the normal operation of the computer. The blue switches are 
specialty switches used for debugging, setup, and learning. The white switches are the 
normal input switches used in other designs.  

The current location of the program counter is shown with green LEDs in the middle right. 
The top red LEDs show the current instruction line output by the code memory.  

The PCB front panel design is shown in Figure 71, with each switch labeled. 

 
Figure 71 – Front Panel PCB 
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Switches 0-15 are the input switches to the i281e CPU. These are used to input data into the 
computer manually. They are utilized when manually writing programs to RAM, when the 
program is expected to input like in pong, and when using the debug switches to change the 
location of the program counter (this will be talked about later). 

Switch 16 controls the clock; kind of like the clock’s enable switch. This works by allowing the 
clock frequency from the clock oscillator to propagate. Although other processes like the step 
switch pulse the clock, this stops the i281e from running. When turning the i281e CPU on, the 
computer should be in the halted state.  

Switch 17 controls the game mode signal. This is a pseudo control signal that affects the 
operation of the video card. Normally, the video card reads the data memory and converts 
the data from binary to the decimal seven-segment equivalent; switch 17 is low. However, 
when switch 17 is active, the video card reads each bit in the data memory as an individual 
LED of the display. This is utilized in some programs, i281 PONG, and banners. 

Switch 18 is the reset line for the i281e CPU. The reset signal is sent to the rest of the i281e 
CPU when activated. The reset signal clears the program counter, the data bus, the compact 
flash register, and reset the UART. 

Switch 19 performs a single step in the i281e CPU by pulsing the clock single once. The i281e 
should be in halt mode before using the single step switch to ensure stability. Single step is 
a helpful functionally to have and use when understanding how the process is working, 
allowing all the LEDs to be seen before an instruction is done. 

Switch 20 is used for examine functionally. This allows the location of the program counter 
to be changed. When examine is active, the instruction bus is overridden with jump 
instruction; the eight lower switches are passed to the offset bus in the program counter. 
This allows for the location of the next location of the program counter to be set to any value 
using the input switches. The program counter's LEDs can be used to quickly tell where the 
program counter will go after releasing the switch. The i281e CPU needs to be in halt mode 
for stability. 

Switch 21 is deposit and switch 22 is used as the code/data memory selection for deposit. 
These switches are used to load programs into the RAM chips and load numbers into data 
memory. When the switch is active, the instruction bus is over with the INPUTC/INPUTD 
instruction, and the switches are sent to the RAM chips and data memory input mux. After 
the switch is released back to the lower position, the instruction is executed and loaded into 
the corresponding location. The program counter is also increased by one in preparation for 
the next input. Switch 22 is in the lower position when writing to code memory and in the 
higher position when writing to data memory. These write locations are also located at 
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different points in memory; RAM addresses start at 0x80, and data memory starts at 0x00. 
Examine will allow the i281e to move through these addresses for writing to and afterward 
when starting the program loaded into RAM.  

The clock frequency selector is a 12-point rotary switch that allows one to choose from the 12 
selected frequencies. The different frequencies available with a 4 MHz oscillator are shown 
in Table 12. The process shown be halt state before switch frequency to ensure stability. 

Position Frequency 
12 2 MHz 
11 1 MHz 
10 250 kHz 
9 62.5 kHz 
8 31.25 kHz 
7 7.81 kHz 
6 1.95 kHz 
5 244 Hz 
4 61.04 Hz 
3 7.63 Hz 
2 1.91 Hz 
1 954 mHz 

 Table 12 - Clock Frequencies 

7.4 I/O Ports 
For the i281e CPU, there are several different types of ports. Some are used to connect the 
Front Panel and others are used to output data to other devices. From Figure 72, we can see 
five different highlighted locations. The Front Panel Bus (40Pin) and the Front Control Bus 
(6DIN) are the two cables that connect the CPU to the Front Panel. See Figure 71 in the Front 
Panel Usage section to see how those two cables connect to the Front Panel on the left side. 
The Compact Flash Bus (40Pin) allows for a compact flash input adapter to connect to the 
board. From here we can load data into the system. The Serial I/O ports allow for RS-232 
cables to connect the system. Additionally, not highlighted in Figure 72, you can see a USB-C 
cable sticking into the CPU. The USB-C is another method for inputting programs into the 
system. There is an Expansion Bus (24Pin) and power output bus which allows for input and 
output to newly created cards in the future. Additionally, there are also breakout pins, which 
the next section covers. 
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Figure 72 - IO Ports of the i281e CPU 

7.5 Breakout Pins 
On the Mainboard in the bottom middle, there are 14 breakout female headers that can be 
used to connect breadboards to the i281e CPU. A specialized cable must be created that 
connects to those 16-bit female breakout header to the breadboard using another 16-bit 
male header. Figure 73 and Figure 74, below shows how the breakout headers are labeled 
and laid out on the i281e CPU. Each of the headers are labeled with a Reference Designator 
“BX”, X being a number 0-14. 

 
Figure 73 - B0 Physical MUX Pinout 
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Figure 74 - B1-B14 Breakout Pins 

Figure 75 shows the pin layout for both the headers on the ribbon cable. The ribbon cable 
header that has the 16P, attaches to the breadboards. The ribbon cable header that has the 
notch in the middle on the longest side for the PCB headers. Pin 0 is always on the side with 
the red wire. 

 
Figure 75 - Pin Layout for both i281e CPU and Bread Board Headers 

Table 13 - Breakout Pins Explained below shows the Reference Designator, the labeled name 
on the CPU, and what its data path really means.  Table 13 - Breakout Pins Explained below 
shows those paths more visually. Here you can follow the data path from and to 
components, so one could appropriately attach breadboards to the signals they desire. One 
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could effectively remove one of the modules and use these headers to create a bread board 
version of the module and test it with the full system. 

Reference 
Designator 

Labeled Name Meaning 

B0 REG Input / C18 Out Data Path from Physical MUX to Program Counter 
B1 Instruction High Bits Data Path from CMEM Instruction to Control Table 
B2 REG Port 0 / ALU 

Input A 
Data path from REG Port 0 to ALU Input A 

B3 REG Port 1 / 
WRTBACK 

Data path from REG Port 1 to WRTBACK module and C16 
MUX Input 0 

B4 ALU Input B / C11 Out Data path from C11 MUX Output to ALU Input B 
B5 ALU Output Data path from the ALU Output to C15 MUX Input 0 
B6 ALU Flags Data path from ALU Flags to Control Table 
B7 Switches High Bits Dath path for the Switches High Bits to the Writeback 

Module 
B8 Instruction Low Bits Data path from CMEM Instruction Low Bits to Physical 

MUX, C11 MUX Input 1, and C15 MUX Input 1 
B9 Program Counter Data path from Program Counter to CMEM 
B10 DMEM Address / C15 

Out 
Data path from the C15 MUX Output to the DMEM 
Address, C18 MUX Input 0, and CMEM 

B11 DMEM Input / C16 
Out 

Data path from C16 MUX Output to DMEM Input 

B12 DMEM Output Data path from DMEM Output to C18 MUX Input 1 
B13 REG Input / C18 Out Data path from C18 MUX Output to Physical MUX and 

Register File 
B14 Switches Low Bits Data path from Switches Low Bits to Writeback Module 

and to C16 MUX Input 1 
Table 13 - Breakout Pins Explained 
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Figure 76 - Breakout Pins Data Paths Visualized 

The i281e CPU also has pins that can be tapped to input the +5V rail, clock, reset, ground, and 
control signals to the bread boards. If the module that you are removing from the system 
requires a clock signal and reset signal, you can expect to tap all four signals on the left of 
Figure 77. If the module also requires control signals 12, 13, and 14, you could use a wire to 
bring them from the CPU to the bread boards. 

 
Figure 77 - Power and Control Line Output Headers 

Figure 78 shows one of these tests. Here, we removed the C11 MUX, and replaced it with a 
breadboard MUX. We used the +5V and GND line from the “Power OUT” headers. Since it 
was the C11 MUX, we used the C11 control signal. As for the 16-bit headers, we used B3, B4, 
and B8 which are the inputs and outputs of the C11 MUX. 
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Figure 78 - Bread Board to PCB Implementation 

7.6 Running Programs 
A terminal must be connected to the computer to load programs into RAM for running them 
on the i281e CPU. “Tera Term” is a good option for communicating with the i281e CPU. 
Plugging in a USB cable to the USB-C port located on data memory and a computer with 
allow the user to see the DOS boot screen (DOS is explored more in later sections). To ensure 
the DOS functionality works, the process should run at maximum speed. After selecting the 
fasted clock frequency, toggle the reset switch and the i281e CPU will load the DOS menu.  

The compact flash has different blocks for programs ready to run, from zero to nine. Use “CD” 
followed by a number to navigate to the corresponding block; for example, “CD 4” with allow 
the terminal to see into block four. Use “DIR” to list the programs stored in the corresponding 
block. This will print out a list of programs that can be called; by navigating with these 
commands, a program can be found. To run the program, type the block it is located in, 
semicolon, followed by the name of the program. For example, “4:BANNER” will run the 
banner.sv program from the fourth block of the compact flash.  

A halt command can also be called by using an ampersand symbol before “$4:BANNER”. 
This is helpful if the program needs a slower clock speed to be visible than the boot process. 
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After calling the program with a halt command, the program loads into RAM like normal, but 
it will not start executing the RAM instructions after loading them. Instead, the i281e CPU will 
be in a loop in ROM. This loop can be exited after setting the clock to a lower frequency, by 
halting the i281e CPU and then using the examine switch. Simply toggle the switch with no 
switches active and the i281e CPU starts executing the program selected.  

7.7 Maintenace  
7.7.1 Finding Bad Parts 
When the machine is not working as expected, it might not be the program currently 
running. There is a chance that a component overheated or something short circuited. If you 
smell something like plastic burning or see a plume of smoke, it is probable that a 
component burnt out. It is difficult to find the component when you are not sure where the 
smoke came from. Look for physical defects on all components such as burn marks, melted 
plastic, or misshaped components. Hover your hand over the board and feel for residual heat 
coming from components. If you see or feel anything from those components, chances are 
that those are the ones that got damaged. If you have access to a thermal camera, you can 
use it to see which components are getting hot when the i281e machine is on. This data can 
be useful to prevent the destruction of components. 

Additional testing can be done via a multimeter or oscilloscope on components such as 
resistors, capacitors, transistors, and diodes. You could run a continuity test on them to see if 
they broke down into an open-circuit meaning that no current can flow through the 
components. You can also test to see if the parts are working as expected and have the 
properties that their datasheets say they should have. 

One could also do some isolation testing. Remove modules from the board and individually 
test components and output pins. If a module does not act as it should, do more detailed 
testing on the individual components of that module. Once you find the issue parts, you 
need to switch them out for a new chip of the exact same part number, package size, and pin 
layout. 

7.7.2 Switching Out Parts 
Throughout the life of the i281e machine, parts will become old, damaged, or simply 
breakdown. It is an occurrence that is simply bound to happen, so you need to know how to 
fix it. When a component isn’t working properly and it needs to be replaced, there are two 
methods that can be used: prying out the part or unsoldering components.  

Prying out the part includes using a flathead screwdriver or some alternative object to get 
underneath a chip that sits in a dip package. From this, you can get leverage on the chip and 
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pry it up. This method is used primarily for the 74HCT logic chips that are in the dip 
packages.  We can see in Figure 79 on the left there is a logic chip in the dip package and on 
the left, there is the part with the chip removed. 

 
Figure 79 - Dip Package with and without Chips 

Unsoldering components requires either a soldering wick or heat gun. To use the soldering 
wick, press the wick on top of the solder you wish to remove. Press your soldering iron into 
the wick at the same location as that solder. As the wick heats up, it will start to draw the 
solder into itself. If the solder is stubborn, add additional solder to the problem area and 
repeat the process of using the wick. Sometimes adding additional solder helps the wick 
absorb the solder.  

If you have access to a heat gun, you can use that to unsolder several pins at once. This 
method is better suited for components with multiple pins or leads close to each other. The 
solder used on the PCB boards melts at around 700oF, so ensure that you set the heat gun to 
the right temperature. To remove components, aim the heat gun at the solder until it starts to 
shine like a mirror. At this point, the solder is in a liquid form. Use pliers to pull the 
component out of the other side. Repeat as necessary. Be careful not to aim the heat gun at 
yourself. Do not touch the component with your fingers as the component may be hot. 

Once you have the component removed, you can install the new one. For parts that are 
inserted into the dip packages, firmly press the chip into the package. Ensure that the 
semicircle at the center of the dip package aligns with the semicircle on the chip. If the chip is 
not going in easily, use the pin adjuster or some pliers to make 90o angles on all the pins 
pointing downwards. Then retry pressing the chip into the package.  

For parts such as a resistor or LED, simply slot the part into the board. Then flip the board 
over onto the opposite side and find the location where the part is located. With your 
soldering iron, apply heat to the solder pad. The solder pad is a ring of silver colored material 
at the base of the through-hole connection. Once the solder pad is heated, press your solder 
into the pad and pin it until it melts. If you cannot get the solder to melt, put a dot of solder 
onto the tip of your soldering iron and try again. Once the solder is melted, it should attach to 
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both the pad and the pin. If done correctly, the solder should take up the whole pad and not 
be rounded like a ball (See Solder Joints 1 and 3-7 on Figure 80). If the pad can still be seen, 
reflow the solder and heat the pad until it covers the whole pad. If the solder is not visibly 
attached to the pad and pin all the way around the pin, add more solder until it covers the 
whole pad. Solder Joint 2 on Figure 80 is lacking some solder. The joint should still function 
correctly but would be more reliable if there was more. If the solder joint looks like a ball, you 
have put too much solder on the joint (See Solder Joint 8 in Figure 80). Consider applying a 
solder wick as discussed above to remove If the solder joint looks darkened, you applied too 
much heat and the flux in the solder is burned out. This type should still work but look for the 
issues mentioned previously. 

 
Figure 80 - Different Types of Solder Joints 

7.8 Expansion Capabilities 
Since the i281e CPU works as a computer, there is a world of opportunities to expand the 
functionality of the design. Keeping this in mind, the i281e CPU hardware team thought 
ahead and left a 24-bit expansion bus and power bus on the bottom right side of the DMEM 
Module. This location allows for newly designed modules to be placed on the right side of 
the machine and connected. The signals that are sent out are the DMEM output bus, read & 
write lines, control lines C17 & C18, lower bits of the DMEM address line, clock, and 
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demultiplexer select line using the DMEM address line.  Figure 81 below shows the 
expansion bus and power outputs located on the bottom right side of the DMEM Module.  

  
Figure 81 - Expansion Bus and Expansion Power 

During the design and development of the i281e CPU, some of the group members created 
some passion projects to expand the project beyond the original requirements. One of these 
projects was the Mega I/O Expansion PCB card. This card allows the use of a printer, 
speakers, PS2 keyboard, and PS2 mouse. Figure 82 shows the card. This card barely 
scratches the surface of the expandability of the i281e CPU. 

 
Figure 82 - Mega I/O Expansion Module 
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8 Appendix B 
Intermediary Design Iterations 

• Versions considered before client’s specifications have changed 
• Versions considered before learning more about the project 
• Versions that resulted in failure to achieve specifications, etc. 
• Describe why they were scrapped/revised 
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8.1 Design Decisions 
8.1.1 TTL Chip Selection 
As this project aims to implement the i281 processor using discrete logic, 74-series chips are 
utilized to handle the computational burden.  There are three chip choices for TTL-style logic 
for the 74-series: LS, HC, and HCT. 

The previous project utilized 74LS chips.  These are valid chips to be utilized; however, these 
are harder to come across and less performant compared to the following options.  
Alternatively, there are 74HC chips.  These have a high-power requirement and do not match 
the pin-out of 74LS chips. 

Our team decided on using 74HCT chips.  These are cheaper, easier to obtain, and match the 
pin-out of 74LS chips.  If we need to prototype a CPU component while waiting for our 
74HCT chips, there are spare 74LS chips courtesy of the previous project.  This will allow us 
to produce a breadboard component sooner and we can swap out for the 74HCT chip when 
testing. 

8.1.2 Design Layout 
For the breadboard design, it should be known that an 8-bit 2-1 multiplexer circuit takes up 
an entire breadboard (63 columns, 8 rows).  This is the smallest CPU component that will be 
built.  Since there are approximately 8+ multiplexers, we already consume 8+ breadboards.  
For larger CPU components, at least 3 breadboards may be needed up to 8.  To compensate, 
50 breadboards were ordered for this project. 

Given the context, the i281 processor on breadboard is a colossal project that will cover an 
entire table.  As seen with the previous project, they attempted to compact the processor by 
constraining it to a single breadboard surface with wires going everywhere.  This is not 
sustainable for maintenance and debugging. 

Rectifying this problem, all breadboard CPU components will be built into “islands.”  These 
islands must be connected through a ribbon cable which will act as a bus data line (up to 8 
bits).  This resolves our issue of maintaining a large processor by manually separating the 
components and requiring loose coupling.  Unfortunately, we will need to use more 
breadboards and more table space.  The trade-off has been considered acceptable 
regardless. 

8.1.3 Read/Write of RAM 
The original i281 design was built using Verilog for FPGA devices.  As such, certain 
constraints could be ignored   One of these major constraints was reading and writing to 
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RAM in a single clock cycle.  Nearly all RAM on the market is considered “single-port” RAM.  
The data lines for reading and writing are on the same pins of the IC.  Given this restriction, 
reading and writing to RAM must be performed in two separate clock cycles which conflicts 
with the requirements of the project.  This only occurs if RAM passes an instruction that 
would alter the contents of RAM in the same cycle. 

Mitigating this dilemma started with separating what is permitted during BOOT and RUN.  
The primary decision was to remove the ability to modify RAM while in RUN mode.  While 
self-modifying code is permitted in certain scenarios on other processors, said processors 
may take more time to operate single instructions thus avoiding single cycle read/write.  For 
our design, BOOT will run from ROM exclusively and write user programs (and any additional 
instructions) to RAM.  Finally, RAM will operate as a “read-only” while we are currently in 
RUN mode. 

8.2 Boot Sequence Discussion 
When a processor is powered on, it doesn’t go from a powered-off state to running 
instantaneously.  A process exists to begin execution of user operations as soon as the 
device is ready.  Unfortunately, simulations of the i281 processor ignore this circumstance 
and immediately begin executing instructions without hesitation. 

Rectifying this problem spun about the idea of banking/partitioning example programs into 
the ROM and allowing for quick handling of example programs and provide a way for users 
to manually enter programs by hand if so desired.  This solution was not perfect for the 
client as the RAM chip was heavily underused. 

The current solution is to include a “hard disk” (separate ROM, hereby User ROM) per the 
request of the client that will contain any premade programs that can be loaded into RAM at 
boot.  The boot sequence will start with reading the first five (SW4-SW0) switches to 
determine what program to load in from User ROM into RAM.  If a program needs to load 
another section into RAM, an instruction will jump back to ROM and load the next sequence. 

8.2.1 Dismissal Reasons 
While this in-theory would work, the overarching design is now different in the final design 
starting from breadboard implementation’s second design iteration.  The “hard disk” of the 
final design is now the compact flash memory.  This is intertwined with DMEM data paths 
and new opcodes to be fully accessible and controlled by software, not hardware. 
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9 Appendix C 
Other Considerations 
Any miscellany you deem important, what you learned, anything funny, anecdotes from 
your project experience. 
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9.1 Design Definitions 
In addition to all the terms and acronyms listed throughout the document, these definitions 
or additional acronyms are intended for this appendix specifically and do not have any 
meaning in the grander document. 

9.1.1 Breadboards 
A “breadboard island” is a CPU component that is completed on breadboard and is isolated 
from other CPU components.  The only way for logic/data to leave these boards is from bus 
data lines. 

Alternatively, the name “module” can be used to describe the same element; however, this is 
typically used for the PCB implementation. 

9.1.2 Scoping 
There are two types of “scope”: global and local. 

Global scope, or globally scoped, mandates the requirements across all breadboards or PCBs 
of a particular component, wire, etc.  For example, if a wire is globally scoped, it should be 
the only wire color used for a particular case in all scenarios regardless of breadboard or 
PCB. 

Local scope, or locally scoped, does not mandate adhesion to a particular requirement but 
gives strong preference on to how it should be used in the project.  For example, if a wire is 
locally scoped, it should be left to the discretion of a board upon which usage it should fall 
under.  Once more, it is strongly recommended that the suggestions given be used unless 
otherwise needed. 
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9.2 Breadboard Wiring Standards 
9.2.1 Wire Color Scheme 
Through the usage of a 6-color wire spool set and two separate colors, the following wire 
colors must generally represent the appropriate usage on a breadboard. 

 

Black 
Purpose: ground (GND) 
Scope: global 
 
Standard color choice.  Black is specifically reserved 
for ground only.  This should be used for jumpers to 
the ground line in a breadboard or across breadboards. 

 

Red 
Purpose: +5V power line 
Scope: global 
 
Standard color choice.  Red is specifically reserved for 
power (+5V) only.  This should be used for jumpers to 
the power line in a breadboard or across breadboards. 

 

Blue 
Purpose: data line, primary 
Scope: global 
 
In all other cases where information being transferred 
across a component isn’t an address or control line, the 
line is considered data. 

 

Green 
Purpose: address line 
Scope: global 
 
Processor addresses will be illustrated as green wires 
when known.  When uncertain, use appropriate 
alternate color (data line(s)). 
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Yellow 
Purpose: control line, clock pulse 
Scope: global 
 
Control line jumpers are indicated using yellow.  A 
separate cable may be used to carry more than one 
line but must be indicated as such. 

 

White 
Purpose: data line, secondary 
Scope: local 
 
In cases where a significant number of blue wires 
would be used for data, white wire may be used to 
help alleviate eye strain. 

 

Orange 
Purpose: data line, ternary 
Scope: local 
 
Typically used as a data line in the Register File, the 
wire may be used for the clock line in debugging to 
differentiate between control lines. 

 

Purple 
Purpose: data line, ternary 
Scope: local 
 
Typically used as a data line in the Register File, the 
wire may be used for control lines. 
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Gray Ribbon Cable 
Purpose: bus data line 
Scope: global 
Data transfer between breadboard islands.  Measure 
between islands and cut with reasonable slack. 

 

 

9.2.2 Connector for Bus Data Lines 

 
 

Pin Description 
D0-D7 Data lines 0-7 
GND Ground 

 

The primary indicator for the connector is that the zeroth bit line (non-gray wire) must be on 
the right side of the connector when facing the i281 processor.  Alternatively, when viewing 
the breadboard implementation, the non-gray side must point/face toward the right side of 
the machine. 

If uncertain what direction the breadboard implementation should face, ensure the positive 
line is north (from perspective) and all numbers are readable.  From there, east is the 
direction the cables should face when plugged into breadboards. 
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9.3 Visualization Standards 
An initial 6 colors were purchased for the i281 CPU.  There are two sets of standards enacted 
for the project: breadboard and PCB.  Ultimately, the PCB standard is considered “de facto” 
and the breadboard standard remains a legacy component to better understand the original 
implementation.  Future implementations, either breadboard or PCB, should exclusively use 
the PCB standard. 

9.3.1 Breadboard Visualization 

 

Orange 
Purpose: register storage 
Scope: global 
 
Meant to exclusively be used for representing what is 
currently stored in the individual registers of the 
Register File. 

 

Red 
Purpose: instruction representation 
Scope: local 
 
Can be used across several modules to represent a 
range of bits from the instruction output. 
 

 

Blue 
Purpose: open 
Scope: local 
 
No reservation for this color.  Primarily used as the 
output of the ALU. 
 



104 | P a g e  

 

Green 
Purpose: program address 
Scope: global 
 
Green is the representation of the program address 
across all CPU components. 
 

 

Yellow 
Purpose: control line indicator 
Scope: global 
 
A yellow LED is meant to indicate the assertion of a 
control line at both the source (instruction decoder) 
and destination (multiplexer, ALU, etc.) 

 

White 
Purpose: flags register 
Scope: global 
 
Meant to visualize a given flag value for the ALU. 
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1.2.2 PCB Visualization 

 

Orange 
Purpose: latching signals 
Scope: global 
 
Represents a 4-bit or 8-bit value stored using a 
latching register (usually octal latch) chip.  Heavily 
represented for the Register File. 

 

Red 
Purpose: transient signals 
Scope: global 
 
Represents signals that are not meant to remain upon 
the following instruction.  This color may also be used 
as an indicator light, primarily power or CF activity. 

 

Green 
Purpose: program address 
Scope: global 
 
Exclusively used for the program counter and front 
panel.  Represents the current or next program 
address in relation to ROM/RAM address. 

 

Yellow 
Purpose: control path signal 
Scope: global 
 
Represents a control path signal in the respective 
module or on the control table module.  A lit LED 
confirms the assertion of a control path signal. 
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10 Appendix D 
Software and Hardware Resources 
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10.1 Software Resources 
The technical lead, Gavin Tersteeg, has compiled a large collection of homebrew software 
(including DOS/281) on his personal GitHub repository: https://github.com/tergav17/i281-dev. 

10.1.1 Third-Party Software 
While the project is fully capable of standing on its own, several pieces of software were 
used in the designing process of the project alongside day-to-day debugging and 
development. 

Software Usage Link 

GitLab Version Control https://about.gitlab.com/ 

Google Drive Documentation https://drive.google.com/ 

Inkscape Branding/Diagrams https://inkscape.org/ 

LibreCAD CAD https://librecad.org/ 

KiCad Schematic/PCB Development https://www.kicad.org/ 

Microsoft 
Office365 

Documentation/Budgeting https://www.office.com/ 

Python Programming Language https://www.python.org/ 

Tera Term Serial Terminal for i281e https://teratermproject.github.io/index-en.html 

Visual Studio 
Code 

Script Programming https://code.visualstudio.com/ 

Xgpro EEPROM Programming http://www.xgecu.com/EN/download.html 
 

10.2 Hardware Resources 
Additional hardware resources regarding the mounting hardware and DXF files are located 
on Daryl Damman’s personal GitHub repository: https://github.com/brandtdamman/i281-
hardware.  The repository houses all the necessary DXF files for water/laser cutting 
polycarbonate/acrylic panels for both breadboard and PCB implementations. 
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