

Design Document
Senior Design CPR E 491
Client: Professor Alexander Stoytchev
Team 14 – Hardware Implementation of i281 Processor

Team Members:
Daryl Damman Team & Documentation Lead and Client Point of Contact
Logan Lee Scheduling and Control Management
Grant Nordling Quality Control and Parts Manager
Braxton Rokos PCB Design & Routing Lead and Testing
Gavin Tersteeg Technical Lead, Quality Control, and Project Assembly Lead

Website: https://sdmay24-14.sd.ece.iastate.edu/
Contact: sdmay24-14@iastate.edu

Revised: 2023-12-03

https://sdmay24-14.sd.ece.iastate.edu/
mailto:sdmay24-14@iastate.edu

Executive Summary
Development Standards & Practices Used
Standards and practices of the i281 CPU project establish protocols and procedures that we
must follow to make the i281 CPU as close as possible to industry standards. By including
them, we can ensure that the design is easy for industry leaders and professionals to
understand our design along with less experienced individuals such as students. Some of
the standards and practices assist with mitigating potential error by using the practices
described by the Institute of Electrical and Electronics Engineers (IEEE).

• IEEE 162-1963
• IEEE 370-2020
• IEEE 2716-2022
• IEEE 696-1983

Summary of Requirements
• The primary CPU components must be explainable to CPR E 281 students;
• Memory and control flow must be visualized through LEDs and other indicators;
• CPU execution must allow for single-instruction or continuous execution;
• CPU must allow writing custom programs via switches, loading example programs, and

playing PONG;
• CPU design must be as close as possible to the original Verilog design.

Applicable Courses from Iowa State University Curriculum
Major Course Number Course Name

EE 201 Electric Circuits
 230 Electronic Circuits and Systems
 330 Integrated Electronics
 333 Electronic Systems Design

CPR E 281 Digital Logic
 381 Computer Organization and Assembly Level Programming

S E 329 Software Project Management
Table 1 - Applicable courses for the i281 Hardware Implementation project

Acquired Skills
The team has learned many new skills while designing the project and developing the
breadboard prototype. Members have learned how to wire large-scale breadboards, draw
up schematics in KiCad, and hold technical reviews between our client and outside parties.

Table of Contents
1. Team ... 6

1.1 Team Members .. 6

1.2 Required Skill Sets .. 6

1.3 Team Skill Sets ... 6

1.4 Project Management Style .. 7

1.4.1 Results of Project Management Style Adoption ... 7

1.4.2 Project Tracking .. 7

1.5 Initial Project Management Roles ... 7

1.6 Evolved Project Management Roles .. 8

2. Requirements .. 9

2.1 Problem Statement ... 9

2.2 Design Requirements ... 9

2.2.1 Functional Requirements.. 9

2.2.2 Qualitative/Subjective Requirements ... 9

2.2.3 Quantitative Requirements ... 10

2.3 Design Constraints ... 10

2.4 Engineering Standards .. 10

2.5 Intended Users and Uses ... 11

3. Project Plan .. 12

3.1 Project Management/Tracking Procedures ... 12

3.1.1 Project Management ... 12

3.1.2 Tracking Procedures ... 12

3.2 Project Proposed Milestones, Metrics, and Evaluation Criteria ... 12

3.2.1 Overarching Milestones ... 12

3.2.1 Requirements Milestones ... 13

3.3 Task Decomposition .. 13

3.3.1 Initial Complex Design .. 13

3.3.2 Breadboard Implementation .. 14

3.3.2 PCB Implementation .. 15

3.3.4 Final PCB Testing .. 15

3.3.5 Visualization Standardization .. 16

3.3.6 Clock Speed ... 16

3.3.7 Technical Binder ...17

3.4 Project Timeline/Schedule .. 18

3.5 Risks and Risk Management/Mitigation ... 2

3.6 Personnel Effort Requirements .. 3

3.7 Other Resource Requirements .. 4

3.8 Financial Requirements ... 4

4. Design .. 5

4.1 Design Content ... 5

4.2 Design Complexity ... 5

4.3 Modern Engineering Tools .. 6

4.4 Design Context .. 7

4.5 Prior Work/Solutions ... 7

4.6 Design Decisions .. 8

4.6.1 TTL Chip Selection ... 8

4.6.2 Design Layout .. 8

4.6.3 Read/Write of RAM .. 10

4.6.4 Boot Sequence .. 10

4.7 Proposed Design .. 11

4.7.1 Design 0 (Initial Design) ... 11

4.7.2 Design 1... 19

4.7.3 Design 2... 25

4.7.4 Functionality .. 27

4.7.5 Design Visual and Description .. 28

4.8 Technology Considerations ... 29

4.9 Design Analysis ... 29

5. Testing .. 30

5.1 Unit Testing ... 30

5.2 Interface Testing ... 31

5.3 Integration Testing .. 35

5.4 System Testing .. 35

5.5 Regression Testing ... 36

5.6 Acceptance Testing ... 36

5.7 Security Testing ... 36

5.8 Results ...37

6. Implementation ... 40

6.1 Implementation Plan .. 40

6.2 Financial Spending ... 40

7. Professionalism ... 44

7.1 Areas of Responsibility .. 44

7.2 Project Specific Professional Responsibility Areas ... 45

7.3 Most Applicable Professional Responsibility Area ... 46

8. Closing Material ... 47

8.1 Discussion ... 47

8.2 Conclusion .. 47

8.3 References ... 48

9. Appendix A .. 49

10.1 Design Definitions .. 50

Breadboards ... 50

Scoping ... 50

10.2 Wiring Standards .. 51

Wire Color Scheme .. 51

Connector for Bus Data Lines ... 53

10.3 Visualization Standards .. 54

10. Appendix B .. 56

List of Figures
Figure 1 - i281 CPU Simulator Design .. 11

Figure 2 - Register Block From Simulator ... 12

Figure 3 - Register Block from Simulator .. 12

Figure 4 - Register File from Simulator.. 13

Figure 5 - 8-bit 4-1 Mux ... 13

Figure 6 - ALU Subcomponents Diagram ... 14

Figure 7 - ALU Arithmetic Mode Table ... 14

Figure 8 - ALU Shifter Design ... 14

Figure 9 - ALU Addition/Subtraction Design with Flags .. 15

Figure 10 - Program Counter Design ... 16

Figure 11 - Data Memory diagram from the simulator ...17

Figure 12 - Control Logic Blocks .. 18

Figure 13 - OpCode Decoder Logic ... 18

Figure 14 - Control Lines Table .. 19

Figure 15 - Code Memory Schematic ... 20

Figure 16 - Register File Schematic ... 21

Figure 17 - ALU Ports Labeled on Diagram ... 21

Figure 18 - Initial Schematic Design of ALU 8-Bit Shifter .. 22

Figure 19 - Initial Schematic Design of 8-Bit Addition/Subtraction Component Schematic 22

Figure 20 - ALU Flag Registers and Output MUX Schematic ... 23

Figure 21 - Program Counter schematic .. 24

Figure 22 - Control table schematic ... 24

Figure 23 - ALU Subcomponents Final Schematic ... 25

Figure 24 - Output Flags on Schematic .. 26

Figure 25 - Adder Circuit Zoomed in on Last Few Bits .. 26

Figure 26 - Implementation of the ALU on Breadboards ... 27

Figure 27 - Data memory modifications for physical hardware implementation 28

Figure 28 - Code memory discussion .. 28

Figure 29 - Testing Rig ... 31

Figure 30 - User Panel Design ... 32

Figure 31 - 8-Bit 2-1 Multiplexer Design ..37

List of Tables
Table 1 - Applicable courses for the i281 Hardware Implementation project................................... 2

Table 2 - Acronym Definition List .. 5

Table 3 - Member List with Majors .. 6

Table 4 - Required Skill Sets for the Project .. 6

Table 5 - Skill Sets Brought in by Team Members ... 6

Table 6 - Initial project management roles for 491 ... 7

Table 7 - Evolved project management roles at the end of 491 ... 8

Table 8 - Functional Requirements ... 9

Table 9 - Qualitative Requirements .. 10

Table 10 - Quantitative Requirements ... 10

Table 11 - Design constraints.. 10

Table 12 - Overarching Milestones .. 13

Table 13 - Requirements Milestones .. 13

Table 14 - Initial Complex Design Tasks List .. 13

Table 15 - Breadboard Implementation Tasks List .. 14

Table 16 - PCB Implementation Tasks List ... 15

Table 17 - Final PCB Testing Tasks List .. 16

Table 18 - Visualization Standardization Tasks List.. 16

Table 19 - Clock Speed Tasks List .. 16

Table 20 - Personal Effort Requirements Towards Each Component .. 3

Table 21 - Tool List for the i281 CPU Design ... 7

Table 22 - Comparison Between Ben Eater's CPU and the i281 CPU ... 7

Table 23 - Switch Types and Applications .. 34

Table 24 - Part Order #1 parts and costs .. 41

Table 25 - Part Order #2 parts and costs .. 42

Table 26 - Part Order #3 parts and costs .. 42

Table 27 - The seven areas of professional responsibility in the assessment instrument 44

Table of Acronyms
Acronym Name

EE Electrical Engineering
CPR E Computer Engineering
CPU Central Processing Unit
PCB Printed Circuit Board
PWB Printed Wiring Board

DMEM Data Memory
CMEM Code Memory

LED Light Emitting Diode
IC Integrated Circuits

RAM Random Access Memory
ROM Read-Only Memory

EEPROM Electrically Erasable Programable Read-Only Memory
EPROM Erasable Programable Read-Only Memory

BB Breadboard
FPGA Field Programmable Gate Array
BOM Bill of Materials
IEEE Institute of Electrical and Electronics Engineers
DIP Dual Inline Package

MSB Most Significant Bit
LSB Least Significant Bit
ALU Arithmetic Logic Unit
BIOS Basic Input/Output System

PC Program Counter
MUX Multiplexer
ETG Electronics and Technology Group
TTL Transistor-Transistor Logic
HC High-Speed CMOS

HCT High-Speed CMOS with Transistor-Transistor Logic Voltages
LS Low-Power Schottky

GND Ground
SW Switch
FR Functional Requirements
SR Qualitative/Subjective Requirements
QR Quantitative Requirements

Table 2 - Acronym Definition List

1. Team
1.1 Team Members

Primary Degree / Major Member Name
Electrical Engineering Logan Lee

 Braxton Rokos
 Grant Nordling

Software Engineering Gavin Tersteeg
 Daryl Damman

Table 3 - Member List with Majors

1.2 Required Skill Sets
Skill Set Rationale

PCB Design The project’s second phase is centered around developing PCBs.
Layout PCB layout is an important factor in designing and creating PCBs.

Routing Routing is a difficult task that is essential to the success of a PCB
and determines if the board can be printed.

Assembly The first phase of the project includes physically building the
circuits using breadboard and potentially other materials to create
the product.

Digital Logic The project is centered around constructing a processor using topics
almost exclusively from the CPR E Digital Logic class.

System Testing Both phases of the project include testing our designs against every
possibility to ensure proper function.

Assembly
Programming

The i281 as a custom instruction set architecture (ISA) and particular
programs must be written for functional tests.

Table 4 - Required Skill Sets for the Project

1.3 Team Skill Sets
Member Usable Skill Sets

Logan Lee Circuit design and digital logic simulation.
Grant Nordling PCB and circuit testing, part ordering, enclosure design and wiring
Braxton Rokos Circuit design, PCB layout and testing, and circuit simulations.
Gavin Tersteeg PCB, digital logic, and homebrew computer design.
Daryl Damman Project management and software/assembly programming

Table 5 - Skill Sets Brought in by Team Members

1.4 Project Management Style
The chosen Project Management Style is Agile; however, it is loosely adopted. There exist
certain actions and procedures that we perform that are more akin to Waterfall. With the
scope of this project and course, a full implementation of the Agile methodology was
deemed too burdening. This was further amplified with the class and work schedule of each
member and the client. Our notable differences from Agile are as follows:

1. There are no retrospectives held after sprints (or milestones, in this case).
2. Milestones don’t adhere to a particular schedule and are neither weekly nor monthly.
3. Daily standups are not held due to time constraints of all members.

Through our project management style, tasks are identified individually and grouped into
appropriate milestones. These milestones are observed, tracked, and held against our total
project plan.

Meetings are held weekly on Wednesday night, with the adoption of including a work
session on Mondays. During our weekly meeting, we will review these tasks and determine
the appropriate steps forward. At the end of our weekly meeting, we begin our client
meeting to discuss current project progress, hold technical discussions, and affirm project
requirements.

1.4.1 Results of Project Management Style Adoption
At the end of the first semester, the Agile style slowly faded out to prioritize finishing
particular tasks and preparing for faculty panel review. Milestones are still tracked and
monitored but tasks were not recorded as accurately. The primary project management
style will be more thoroughly enforced at the start of the second semester.

1.4.2 Project Tracking
For additional information regarding how we track stories and communication, please refer
to the Project Management section in Section 3, Project Plan.

1.5 Initial Project Management Roles
Member Usable Skill Sets

Logan Lee Schedule Consultant and Testing Co-Lead
Grant Nordling Project Assembly Lead and Quality Control Co-Lead
Braxton Rokos PCB Design & Routing Lead, Prototyping Lead, and Testing Co-lead
Gavin Tersteeg Quality Control Co-Lead and Testing Co-Lead
Daryl Damman Team Lead and Client Point of Contact

Table 6 - Initial project management roles for 491

1.6 Evolved Project Management Roles
Member Usable Skill Sets

Logan Lee Schedule Consultant and Control Management
Grant Nordling Quality Control Co-Lead and Parts Manager
Braxton Rokos PCB Design & Routing Lead and Testing Co-Lead
Gavin Tersteeg Technical Lead, Quality Control Co-Lead, and Project Assembly Lead
Daryl Damman Team Lead, Documentation Lead, and Client Point of Contact

Table 7 - Evolved project management roles at the end of 491

2. Requirements
2.1 Problem Statement
Currently, the students in the digital logic course do not have a physical design of an i281
CPU they can use to apply their learning. This project aims to make a raw physical design of
this CPU on breadboards that students can interact and learn with and a slick PCB physical
design with LEDs to show the processes as they happen.

2.2 Design Requirements
Requirements are split into three categories: functional, qualitative (subjective), and
quantitative. These are denoted as functional requirements (FRs), qualitative requirements
(SRs), and quantitative requirements (QRs).

2.2.1 Functional Requirements
Req. # Requirement Description

FR-1 CPU clock must permit stepping through instructions and operating at a
specific range of frequencies

FR-2 CPU must allow writing custom programs via interface panel
FR-3 CPU must allow loading example programs from the Boot Hard Disk
FR-4 CPU must be capable of playing a version of the i281 PONG example program
FR-5 Instruction decoding must handle active high and low signals
FR-6 All internal storage and calculations must be visualized through LEDs
FR-7 CPU booting must appear instantaneous to students
FR-8 CPU execution must allow for single-instruction or continuous execution
FR-9 CPU must allow loading example programs from ROM

FR-10 EEPROMs must be used for the control line logic
Table 8 - Functional Requirements

2.2.2 Qualitative/Subjective Requirements
Req. # Requirement Description

SR-1 Data bus cables must be clearly labeled
SR-2 Data bus cables must have the zeroth bit on the right-hand side
SR-3 EEPROMs must be either the same chip or hot-swappable
SR-4 RAM chips must be either the same chip or hot-swappable
SR-5 Visualization for the current address (program counter) must be one color
SR-6 The project must be aesthetically pleasing and attractive
SR-7 CPU must be explainable to CPR E 281 students
SR-8 CPU must be capable of being modular
SR-9 Any implementation (breadboard or PCB) must be interchangeable

SR-10 CPU must be readable from one viewing direction
SR-11 CPU must be fully labeled
SR-12 CPU design must be as close as possible to the original Verilog design
SR-13 Bus entry and exit need to be clearly labeled with direction and connection

type
SR-14 LEDs and related visualizers must be color-coded
SR-15 Singular direction (northern indicator) must be standardized and rigorously

followed for all CPU components and visualizers
SR-16 A standard cable and LED color code must be used to distinguish

Table 9 - Qualitative Requirements

2.2.3 Quantitative Requirements
Req. # Requirement Description

QR-1 RAM must hold at least 64 words/instructions
QR-2 Program addressing must be at least 6 bits
QR-3 Visualized binary data must be represented in 2’s complement by reading the

most significant bit (MSB) on the left to the least significant bit (LSB) on the
right

QR-4 CPU must achieve 1MHz clock speed on PCB implementation
Table 10 - Quantitative Requirements

2.3 Design Constraints
Req. # Requirement Description

C-1 Both ROM and RAM must use Big Endian
C-2 All breadboards and PCBs must be labeled
C-3 All modules must be constructed using continuously obtainable components
C-4 Modules should be electrically self-contained to show logical separation
C-5 All instructions must be able to execute in a single clock cycle.

Table 11 - Design constraints

2.4 Engineering Standards
• IEEE 162-1963

o IEEE 162-1963 describes the standard definitions and terms for digital computers.
As the project is intended to be educational, using the appropriate terminology for
digital computing and related components is paramount for a comprehensive
curriculum. [2]

• IEEE 370-2020
o IEEE 370-2020 describes a standard for predicting electrical characteristics on

printed circuit boards and other related interconnects at frequencies up to 50 GHz.

This is relevant to our project because we will need to handle signals running at
up to 1 MHz on our printed circuit boards for the final product. [3]

• IEEE 2716-2022
o IEEE 2716-2022 provides a guide for characterizing the effectiveness of printed

circuit board level shielding. In our project, we will have a dozen or so PCBs all
connected with discrete cables. We will need to take shielding into account, so we
don’t encounter noise-related problems. [4]

• IEEE 696-1983
o IEEE 696-1983 describes a computer bus architecture for 8-bit computers running

at TTL logic levels. Knowledge of how to avoid signal noise, arbitrate device
access, and distribute power to all subsystems will come into use for our own
project. [5]

2.5 Intended Users and Uses
The intended users of the i281 CPU project are Professor Stoytchev and college students
who take his courses. Professor Stoytchev may create a class dedicated to recreating
portions of the CPU design using breadboards. The students will connect their designs to the
i281 CPU using the ribbon cables to test their designs.

3. Project Plan
3.1 Project Management/Tracking Procedures
3.1.1 Project Management
Our project is based around an Agile methodology but does not fully implement it. Tasks are
identified individually and grouped into appropriate milestones. During our weekly meeting,
we will review these tasks and determine the appropriate steps forward. Our further
differences from Agile are as follows:

• There are no retrospectives held after sprints (or milestones, in this case).
• Daily standups are not held due to time constraints of all members.

3.1.2 Tracking Procedures
Provided by the university, Gitlab has been used throughout this semester and will continue
to be used into the final semester. Gitlab is being used to track tasks and milestones of the
project, as outlined in the project plan. Email and Discord are also being used to
communicate and provide a written record that will be backed up into Gitlab when
appropriate, as outlined in the Team Contract.

3.2 Project Proposed Milestones, Metrics, and Evaluation Criteria
From our project, there are two types of milestones we have: overarching and requirements.
Overarching milestones are those tracked throughout the project life cycle as the primary
milestones. Requirement milestones will track additional tasks that are done pseudo-
independently of the project which satisfy the requirements of the project.

3.2.1 Overarching Milestones
Overarching Milestone Description

Initial Complex Designs Certain CPU components cannot be directly translated
from FPGA simulation to hardware. As such, these
components will need technical discussions with the
client and members alike.

Breadboard Implementation Per the client’s requirement, the CPU will be
implemented on breadboard before constructing a
PCB design/set-up. This will be the proof-of-concept
using the converted FPGA simulation designs.

PCB Implementation Once the breadboard implementation is complete,
PCBs must be designed and ordered. These are
required to be hot-swappable with breadboards.

Finalized PCB Testing While PCB testing will be performed throughout
implementation, dedicated time has been reserved for
ironing out all potential kinks in the PCB system.

Table 12 - Overarching Milestones

3.2.1 Requirements Milestones
Requirements Milestone Description

Visualization Standardization Design elements of the breadboard and PCB
visualizations need to be standardized. These include:

• LEDs
• Direction

This must be completed before the Breadboard
Implementation milestone is completed

Clock Speed With the requirement of the CPU reaching 1MHz clock
speed, testing must be performed at incrementally
increasing clock speeds to ensure the system is
capable of handling speeds up to and including 1MHz.

Technical Binder The client has requested a complete copy of all
documentation for the entire project in a physical
binder as an additional deliverable.

Table 13 - Requirements Milestones

3.3 Task Decomposition
The tasks for our project have been broken down into respective overarching milestones.
Additional tasks related to requirement milestones are also listed but not documented on
our Gantt charts as they are tracked independently of the hardware implementation process.

3.3.1 Initial Complex Design
Task

Task Description Description Dependency

1-1 Data Memory Design Design for the DMEM module

1-2 Code Memory Design Design for the CMEM module

1-3 Boot Sequence Process for booting the i281 CPU 1-2

1-4 Control Table Developing the control lookup table for
control lines

1-5 MUX Design Implementing the first ever bus multiplexer
Table 14 - Initial Complex Design Tasks List

3.3.2 Breadboard Implementation
The following components will require one or more schematics to be drawn and
implementations of the schematics on breadboard to be completed.

Task # Task Description Dependency

2-1 MUXs 1-5

2-2 Program Counter (PC)

2-3 PC Update Logic 2-2

2-4 ALU

2-5 Control Table

2-6 Register Files

2-7 Flag Register

2-8 Video Card 2-10

2-9 Code Memory

2-10 Data Memory

2-11 Interface Box

2-12 Bus Management

2-13 Power Management

2-14 Control Line Management

2-15 Clock

2-15 Breadboard System Assembly All other breadboard tasks
Table 15 - Breadboard Implementation Tasks List

3.3.2 PCB Implementation
The following components will require one or more PCBs to be routed and ordered for
physical production. These tasks are 1:1 from the Breadboard Implementation milestone.

Task # Task Description Dependency

3-1 MUXs 2-1

3-2 Program Counter (PC) 2-2

3-3 PC Update Logic 2-3

3-4 ALU 2-4

3-5 Control Table 2-5

3-6 Register Files 2-6

3-7 Flag Register 2-7

3-8 Video Card 2-8

3-9 Code Memory 2-9

3-10 Data Memory 2-10

3-11 Interface Box 2-11

3-12 Bus Management 2-12

3-13 Power Management 2-13

3-14 Control Line Management 2-14

3-15 Clock 2-15 and 6-5

3-16 PCB System Assembly All other PCB tasks
Table 16 - PCB Implementation Tasks List

3.3.4 Final PCB Testing
Task # Task Description Description Dependency

4-1 Full System Test Once all PCBs have been assembled and
individually tested, all components will be
brought together to test as a whole system

PCB
Milestone
Completed

4-2 PONG System Test PONG must run on the CPU as required by the
client. As such, a PONG test must be
performed on the PCB system.

4-3 Integrity Test With the PCB system enclosed, the system
should be run as if it would be used in a
laboratory environment to check for faults in
assembly.

4-4 Program Test Custom programs will be written to test the
full functionality of the PCB system.

Table 17 - Final PCB Testing Tasks List

3.3.5 Visualization Standardization
Task # Task Description Description Dependency

5-1 LED Standardization Standardize which LEDs are used for what
purpose and location.

None

5-2 MSB Standardization Standardize if the Most Significant Bit
(MSB) is specifically one color of LED or
not.

5-3 Board Direction Standardize how the boards should be
aligned

5-4 Power Regulation Power needs to be from one or more
sources across either implemented system.
This power source must be standardized.

Table 18 - Visualization Standardization Tasks List

3.3.6 Clock Speed
Task # Task Description Description Dependency

6-1 Clock Testing Using the Arduino Nano Every, use a C
program to test different clock speeds on
breadboard designs to find appropriate
clock speeds

6-2 Clock Speed 0.25MHz Get the Clock Speed on the chips up to or
exceeding 0.25MHz

6-3 Clock Speed 0.50MHz Get the Clock Speed on the chips up to or
exceeding 0.5MHz

6-2

6-4 Clock Speed 1MHz Get the Clock Speed on the chips up to or
exceeding 1MHz

6-3

6-5 Full System Clock
Check

Using the Arduino Nano Every again, check
if the clock speeds theorized are
appropriate for the final design.

6-1

6-6 Manual Clock Control The CPU design must accept a single
button press to perform a cycle on the CPU.

Table 19 - Clock Speed Tasks List

3.3.7 Technical Binder
There are no specific tasks assigned to the technical binder but rather a continuous effort
throughout the semesters. Each time a part is used in a design, either breadboard or PCB,
the first page of the datasheet must be included in the binder. Additional documents:

• Meeting Notes (Client, team, etc.)
• Schematics and PCB routing
• Diagrams and scratch notes
• Design document
• Notable presentations outside of lightning talks
• Bills of Materials
• Any other notable piece of documentation

3.4 Project Timeline/Schedule
The first set of deliverables we have been working on since the start of our project is working
out the hardware design based on the previous computer models. Our split Gantt chart
includes this project as “hardware level design” and subtask underneath. For this deliverable,
we are working with our client to understand what functionality is needed in the CPU and
work through brainstorming ideas to implement. This information is required to complete the
critical components' physical breadboard and PCB designs. The focus of this design stage is
the DMEM, CMEM, the boot sequence of the CPU, and any changes necessary for hardware-
level functionality that differ from the software version.

Our second deliverable is a breadboard implementation of the i281 CPU. This will be where
we spend most of our time since we must work out any problems with our systems here. We
have started building systems for the breadboard and ordering more parts to use in our
breadboard CPU. The step of our project is included in our Gantt chart as “Breadboard
Implementation” sub-tasks are marked with “(BB).”

The last deliverable we will work on for this project is the PCB implementation of the i281
CPU. This will be the final form of the CPU we work on throughout the project. To prepare for
this section of our project, hardware schematics will be created and finalized. Further, we
will work on any problems of our design as well as on breadboards to simplify the PCB
design process. By getting a working PCB, we should put ourselves in a good position to
work on the PCB part.

While not denoted directly on the Gantt charts, Breadboard testing and PCB testing will be
an ongoing task that will be performed during all phases of production on the respective
CPU components.

See the Gantt charts on the following pages.

Chart 1 — Gantt Chart of First Semester (EE 491)

1-Sep-23 22-Sep-23 13-Oct-23 3-Nov-23 24-Nov-23 15-Dec-23

Hardware Level Design

Data Memory Design

Code Memory Design

Boot Sequence

Control Table

Part Planning

Initial Part Ordering

Breadboard Implementation

MUXs (BB)

Program Counter (BB)

PC Update Logic (BB)

ALU (BB)

Control Table (BB)

Register Files (BB)

Flag Register (BB)

Video Card (BB)

Code Memory (BB)

Data Memory (BB)

Interface Box (BB)

Bus Management (BB)

Power Management (BB)

Control Line Mangement (BB)

Clock (BB)

i281 CPU Project Timeline - First Semester

Chart 2 — Gantt Chart of Second Semester (EE 492)

22-Jan-24 12-Feb-24 4-Mar-24 25-Mar-24 15-Apr-24 6-May-24

PCB Implementation

MUXs (PCB)

Program Counter (PCB)

PC Update Logic (PCB)

Code Memory (PCB)

Data Memory (PCB)

Control Table (PCB)

Register Files (PCB)

Flag Register (PCB)

ALU (PCB)

Video Card (PCB)

Interface Box (PCB)

Control Line Mangement (PCB)

Bus Management (PCB)

Final PCB Testing

Final Presentation Prep

i281 CPU Project Timeline - Second Semester

3.5 Risks and Risk Management/Mitigation
Learning from the past group’s attempt at this project, we have already considered problems
with our hardware-level CPU and are working through those to resolve them early. Every
project carries a risk of its plan going wrong, and to mitigate risk, we continuously keep
records of our work. This is most obvious in the schematics we create to keep written records
of our circuits. Schematics are a helpful tool in our risk management since, if needed, they
allow another team to pick up from where we left off. By leveling a clear written record of our
design process, another team can use our design and finish any work that might not have
been finished in time.

We will deal with a common problem throughout our project: shipping times and availability.
We must always be aware of these delays when getting new parts. Although this can
increase the build parts of our breadboard version, we are not overly picky on specific
components, allowing us to get many parts that fit our usage. The time to get the PCB
components will be quite long compared to normal off-the-shelf components; this will be a
concern when in the final stages of our project. We hope to have all the information prepared
at this point, so if we cannot get the final PCB, they should not be difficult to get and use.

Lastly, we face the hurdles of being senior students finishing our degree program(s). While
our academics are our highest priority, all of us are taking 300 or 400+ classes that require
our upmost attention as well. Balancing work, life, and academics offers risk to miss tasks
and deadlines if not treated with respect. As such, our goal to mitigate such risks is to
monitor the progress of all members and hold ourselves accountable. Furthermore, we have
regular times to perform our work that cannot be swept away from other responsibilities.

3.6 Personnel Effort Requirements
Courtesy of completing a large portion of the breadboard implementation, rough time
estimates were compiled and shown against the estimations listed. Certain components
have not yet been implemented and thus Not Applicable (N/A). In-progress is a plus “+”.

Task Name Approx. Hours Estimated Approx. Hours Spent
Data Memory Design 2 N/A
Code Memory Design 2 4

Boot Sequence 5 8
Control Table Design 2 2

Part Planning 10 N/A
MUXs (BB) 12 13.5

Program Counter (BB) 3 4
PC Update Logic (BB) 5 5

ALU (BB) 10 22
Control Table (BB) 10 12

Register Files (BB) 10 42
Flag Register (BB) 10 3

Video Card (BB) 10 N/A
Code Memory (BB) 10 10
Data Memory (BB) 10 N/A
Interface Box (BB) 10 20

Bus Management (BB) 10 4
Power Management (BB) 10 1+

Control Line Management (BB) 10 1+
Clock (BB) 10 5

MUXs (PCB) 5 N/A
PC Update Logic (PCB) 5 N/A

Program Counter (PCB) 5 N/A
Code Memory (PCB) 20 N/A
Data Memory (PCB) 10 N/A
Control Table (PCB) 15 N/A

Register Files (PCB) 20 N/A
Flag Register (PCB) 5 N/A

ALU (PCB) 5 N/A
Video Card (PCB) 8 N/A

Interface Box (PCB) 10 N/A
Control Line Management (PCB) 5 N/A

Bus Management (PCB) 10 N/A
Final PCB Testing 80 N/A

Final Presentation Preparation 40 N/A
Table 20 - Personal Effort Requirements Towards Each Component

3.7 Other Resource Requirements
Compared to other projects, implementing the i281 CPU requires numerous resources.

1. The Electronics and Technology Group (ETG) is our distributor of parts and maintenance
group for the Senior Design lab. ETG will order our parts provided we supply a Bill of
Materials (BOM) and aid us with any questions we may have.

2. Professor Stoytchev, our client, is one of the founding designers of the i281 CPU. As we
are implementing his design, we will require his guidance and requirements throughout
the entire project.

3.8 Financial Requirements
The project, according to our project proposal, is using departmental funding. Our
approximate budget is $1,000 USD with the ability to use less or more depending on
appropriate reasoning. The only financial requirement for the project is to stay within our
approximate budget and save money where both possible and appropriate.

It would be considered inappropriate to reduce costs if the part(s) being purchased are of
reduced quality in such a way that may damage or hinder the project.

4. Design
4.1 Design Content
The design of the i281 CPU includes a multitude of components that will all interconnect and
work together to process and run programs. This project requires that we build all the
circuitry on breadboards a have ribbon cables leading from subcircuit to subcircuit to make
the design easier to read. One of the main goals is to make the design readable and easy to
understand, so a class of students could easily understand the design.

4.2 Design Complexity
The i281 processor is more complicated due to the design choices made compared to modern
processors. It utilizes a variety of TTL-style logic chips to provide a multi-use execution
environment. There are numerous components to the full processor of which most are
present on modern processors:

• ROM w/ BIOS
o This represents where the processor will begin executing instructions, dictating

start up procedures and beyond.
• User RAM

o Programs are loaded into RAM via BIOS startup or program request. These
programs will operate the CPU once the ROM has completed its instruction set.

• Register File
o Handles intermediate volatile memory to store results from the ALU, Data

Memory, or instruction immediate values.
• Arithmetic Logic Unit (ALU)

o Performs the basic arithmetic for instructions via data stored in the Register File.
• Program Counter

o 8-bit program counter that only uses the lower 7 bits to indicate where in
instruction memory the processor is currently executing from.

• Data Memory and Video Card
o Outputs data from the Data Memory onto eight seven-segment displays. Each

segment of each display must be individually togglable to allow more complicated
programs.

Beyond the CPU components, there are also complex tasks of handling items related to the
components.

• Data Bus
o Connects component to component in a cleaner and easier to read method.

• Visualizations
o Individually represent signals and individual bits in registers.

These components do not match or exceed modern solutions. Modern processors are built
on silicon chips through lithography, ion doping, electroplating, and etcetera. These
processors can and will perform far better in all capacities compared to our project. While we
cannot match or exceed modern solutions, the project trumps complexity of a modern
processor by being built on breadboards using integrated components (ICs) and wiring
rather than being a design on a computer that will be sent to a manufacturing facility.

4.3 Modern Engineering Tools
Our tools can be split into a few categories: design, develop, and deploy. Design tools are
used to produce schematics, diagrams, and other relevant components to aid or produce a
design for one or more CPU components. Development tools are used to produce more
tangible results from designs. Deployment tools are for producing a final product.

Some tools may fall into multiple categories due to their wide range of capabilities.

Engineering Tool Category Purpose
KiCad Schematic Editor Design/Develop Drawing technical schematics of all

CPU components.
KiCad PCB Editor Develop/Deploy Producing Gerber files to send off for

PCB printing. Utilizes the schematics
and footprints from other KiCad
programs.

Inkscape Design Creating diagrams and figures for
explaining and outlining high-level
discussions of a CPU component
design.
Additionally used for graphical support.

Excel Design Creating part order lists and keeping
track of various pieces of data.

GitLab Design Keeping track of milestones and design
goals.

Word Design Creating documentation and
explanations for the design.

Table 21 - Tool List for the i281 CPU Design

4.4 Design Context
As noted in the project requirements, the i281 processor aims to be an educational tool for
both CPR E 281 and future classes related to processor architecture. Our target audience is
students in the ECpE department of Iowa State University and individuals interested in
computer architecture.

The ECpE department is affected economically by our project. Not only are they the current
funding source for the senior design project but they will also be responsible for purchasing
and maintaining the i281 processor’s components when deployed to future labs.

It will be noted that there is no societal impact or need for this project. While it is beneficial
for students to be educated about grand-picture computing, the hardware-based i281
processor does not provide a significant impact to the educational program as seen by the
team. This impact may become larger after the development and deployment of the
hardware-based i281 processor.

4.5 Prior Work/Solutions
As mentioned in the subsection regarding Design Complexity, a homebrew computing kit
exists on the market to build 8-bit retro computers [1]. As a comparison between the product
and ours:

Ben Eater’s 8-bit Computer i281 CPU
Comprehensive build kit, costs $315 Chips must be purchased and sourced

individually. Will cost over $315
A full walk through of how the CPU works
and performs shown in a video on Ben
Eater’s channel.

The FPGA and simulator created for the
CPRE 281 class with lecture slides on how
the CPU works.

Uses 74LS series chips. Uses 74HCT series chips.
Has hidden fees for equipment not included
in the kit. Ex. Oscilloscope, Multimeter, etc.

Equipment is provided by ETG and Iowa
State University.

Table 22 - Comparison Between Ben Eater's CPU and the i281 CPU

This project marks our second endeavor in implementing the i281 processor on both
breadboard and PCB. The previous Senior Design team (sddec22-20) achieved a proof-of-
concept by the end of their second semester. Leveraging insights from their experience, our
team has made informed decisions early in the project timeline to avoid their past mistakes,
enhancing the likelihood of successful completion. Our timeline also encompasses the
second phase of the project, focusing on designing and producing PCBs using KiCad. Unlike

the previous team's design, our PCBs aim to showcase the computer's processes, serving as
an educational tool rather than a disassembling learning tool.

To learn from the previous team's experience, our approach involves categorization, general
organization, and careful consideration of the intricacies that the previous team found
challenging. Knowledge transfer from the earlier team guided our decisions, emphasizing
the importance of avoiding design inconsistencies and treating circuits with utmost care. To
maintain constructive feedback, Dr. Stoytchev provided remarks on what worked and didn't
work in the last project, offering valuable insights without denigrating the efforts of the
previous team. The prior project faced challenges, resulting in a non-functional breadboard
computer due to design inconsistencies and insufficient circuit care. Our team is committed
to learning from these experiences to enhance the success of our implementation.

4.6 Design Decisions
4.6.1 TTL Chip Selection
As this project aims to implement the i281 processor using discrete logic, 74-series chips are
utilized to handle the computational burden. There are three chip choices for TTL-style logic
for the 74-series: LS, HC, and HCT.

The previous project utilized 74LS chips. These are valid chips to be utilized; however, these
are harder to come across and less performant compared to the following options.
Alternatively, there are 74HC chips. These have a high-power requirement and do not match
the pin-out of 74LS chips.

Our team decided on using 74HCT chips. These are cheaper, easier to obtain, and match the
pin-out of 74LS chips. If we need to prototype a CPU component while waiting for our
74HCT chips, there are spare 74LS chips courtesy of the previous project. This will allow us
to produce a breadboard component sooner and we can swap out for the 74HCT chip when
testing.

4.6.2 Design Layout
For the breadboard design, it should be known that an 8-bit 2-1 multiplexer circuit takes up
an entire breadboard (63 columns, 8 rows). This is the smallest CPU component that will be
built. Since there are approximately 8+ multiplexers, we already consume 8+ breadboards.
For larger CPU components, at least 3 breadboards may be needed up to 8. To compensate,
50 breadboards were ordered for this project.

Given the context, the i281 processor on breadboard is a colossal project that will cover an
entire table. As seen with the previous project, they attempted to compact the processor by

constraining it to a single breadboard surface with wires going everywhere. This is not
sustainable for maintenance and debugging.

Rectifying this problem, all breadboard CPU components will be built into “islands.” These
islands must be connected through a ribbon cable which will act as a bus data line (up to 8
bits). This resolves our issue of maintaining a large processor by manually separating the
components and requiring loose coupling. Unfortunately, we will need to use more
breadboards and more table space. The trade-off has been considered acceptable
regardless.

4.6.3 Read/Write of RAM
The original i281 design was built using Verilog for FPGA devices. As such, certain
constraints could be ignored One of these major constraints was reading and writing to
RAM in a single clock cycle. Nearly all RAM on the market is considered “single-port” RAM.
The data lines for reading and writing are on the same pins of the IC. Given this restriction,
reading and writing to RAM must be performed in two separate clock cycles which conflicts
with the requirements of the project. This only occurs if RAM passes an instruction that
would alter the contents of RAM in the same cycle.

Mitigating this dilemma started with separating what is permitted during BOOT and RUN.
The primary decision was to remove the ability to modify RAM while in RUN mode. While
self-modifying code is permitted in certain scenarios on other processors, said processors
may take more time to operate single instructions thus avoiding single cycle read/write. For
our design, BOOT will run from ROM exclusively and write user programs (and any additional
instructions) to RAM. Finally, RAM will operate as a “read-only” while we are currently in
RUN mode.

4.6.4 Boot Sequence
When a processor is powered on, it doesn’t go from a powered-off state to running
instantaneously. A process exists to begin execution of user operations as soon as the
device is ready. Unfortunately, simulations of the i281 processor ignore this circumstance
and immediately begin executing instructions without hesitation.

Rectifying this problem spun about the idea of banking/partitioning example programs into
the ROM and allowing for quick handling of example programs and provide a way for users
to manually enter programs by hand if so desired. This solution was not perfect for the
client as the RAM chip was heavily underused.

The current solution is to include a “hard disk” (separate ROM, hereby User ROM) per the
request of the client that will contain any premade programs that can be loaded into RAM at
boot. The boot sequence will start with reading the first five (SW4-SW0) switches to
determine what program to load in from User ROM into RAM. If a program needs to load
another section into RAM, an instruction will jump back to ROM and load the next sequence.

4.7 Proposed Design
4.7.1 Design 0 (Initial Design)
4.7.1.1 Design Visual and Description

Figure 1 - i281 CPU Simulator Design

The i281 CPU design simulator is depicted above. This design encompasses Design 0 as it
was given to us by the client. This includes a BIOS, Code Memory, Program Counter, Opcode
Decoder, Control Table, Data Memory, Video Card, Register Files, Arithmetic Logic Unit, Input
Switches, and Flag Register Files.

4.7.1.2 BIOS
In the original design, a “loader program” (or BIOS as it is called) was provided to allow users
to enter programs into RAM through the interface panel switches (SW15-SW0) depending on
switch selection at boot. Alternatively, an example program would be stored in the second
half of code memory and the BIOS would jump to the active program segment.

4.7.1.3 Code Memory
Code memory was a 16-bit memory storage solution that contained up-to 128 instructions
which were separated in half. The upper half is dedicated to a BIOS and the lower half to the
actively used program memory that could be modified while execution was occurring.

4.7.1.4 Register Files
The register is responsible for holding data for usage by the ALU. In a modern computer, this
is like the code memory component; fast memory for storing the data the computer is
actively using. The block of this design can be seen in the two figures below. The register
takes many inputs to perform its purpose. The data line, 8 bits, feeds into the register file
from a mux, allowing the location to come from the code memory, ALU, or data memory. The

register file also has seven dedicated control lines: the write location, write enable, read
select one, and read select two.

Since the data line is sent to all four register files, the write enables and location is used to
only update the correct register file: A, B, C, or D, when desired. A decoder with enable was
used to send the write enable line to the corresponding register file. There are two read-
select addresses with two bits each, allowing the register to output two different or the same
registers on the two output buses.

Figure 2 - Register Block From Simulator

Figure 3 - Register Block from Simulator

Each of the register files is made of the schematic seen below. These use a D flip-flop with a
mux to ensure the bit is stored until written to use the write enable. Each register file has the
same schematic with different write enable and output bus locations.

Figure 4 - Register File from Simulator

Figure 5 - 8-bit 4-1 Mux

An 8-bit 4-1 mux manages the output of each two-output bus. These are made using 8 4-1
mux with the small selection wires.

4.7.1.5 Arithmetic Logic Unit
For Design 0 of the Arithmetic Logic Unit (ALU), we were given an initial design that was used to
create both the simulator and the FPGA design. As we can see from the image below, the ALU
contains a few subcircuits: the 8-bit shifter, 8-bit adder, a few multiplexers, and a flag calculator.
For our design, we will also be adding the flag registers as part of the ALU design which is just a
4-bit register file. The design employs three control signals. Two of the control signals are labeled
ALU_SELECT0 and ALU_SELECT1 in the picture and they determine the output of the ALU (the
second picture shows the different combinations that lead to different opcodes). The third one is
to control the flag register. This design will output one 8-bit bus (ALU_RESULT in the picture) and
one 4-bit bus (the flag register outputs). The flag register outputs the carry, negative, overflow,
and zero flag.

Figure 6 - ALU Subcomponents Diagram

Figure 7 - ALU Arithmetic Mode Table

The 8-bit shifter circuit is capable of shifting a bit either left or right. The ALU_SELECT0
control signal determines which it goes to. If ALU_SELECT0 equals a logic low, then the
circuit shifts left and vice versa. The design itself can be seen below. This circuit shows the
logic that shifts it both left and right depending on the select signal. This circuit has one extra
output called Shift_Out which goes into a multiplexer in the higher up circuit. It works as a
carry flag when the ALU_SELECT1 control line is at a logic low.

Figure 8 - ALU Shifter Design

The 8-bit adder/subtractor circuit is capable of both adding and subtracting two 8-bit
numbers. When the ALU_SELECT0 control line is at a logic low, the circuit is in addition mode.
When it is at a logic high, then it is in subtraction mode. This circuit is essentially eight full

adders tied together in a line. This circuit also outputs a carry bit and a negative bit. All the
output bits labeled S0-7 can be put into an 8-bit NOR to determine if the value is zero. If it is, it
triggers the zero flag. Lastly, the C7 and C8 carry bits can be put into an XOR to show if the
circuit has overflowed, meaning the result was too large to fit in the number of bits provided.

Figure 9 - ALU Addition/Subtraction Design with Flags

4.7.1.6 Program Counter
The program counter design has four main components. The first being a 6-Bit adder with
one side tied to 6 bits from the Code Memory and the other side having the first bit
hardwired as one. The Cin bit is tied to ground. In the second adder, the left side of it takes the
output of the first adder and the right side takes the lowest 6 bits from the Code Memory
output. The Cin input is also grounded. Next, the first adder’s output is multiplexed together
with the second adder's output. The first one is set to output of the MUX once the control
signal, C2, is set to zero. The second adder’s output moves through the MUX when C2 is set to
a one. The output of the MUX is then thrown into an 8-bit register file where the data is

stored. This register is connected to both the clock and C3. The output of the register file then
goes back into the first adder’s left side and the cycle begins again.

Figure 10 - Program Counter Design

4.7.1.7 Data Memory
The dynamic memory section acts as a location to store intermediate information that is not
immediately needed in computation. In addition to the 4 bytes of memory that can be stored
in the register file, the data memory module offers space to store 128 bytes. The information
in data memory must be loaded into a register before it can be used in other operations. The
control signals associated with data memory are C16, C17, and C18. C16 controls what signal is
used as an input to the data memory module. C17 enables writing to the data memory
module. C18 allows the output of the data memory module to be returned to the register file.

Figure 11 - Data Memory diagram from the simulator

4.7.1.8 Video Card
The video card allows for the results of computations to be displayed to the user. It does this
by displaying the lower 8 bytes of data memory on 7-segment displays. The format of the
output depends on if the user has the “Game Mode” option selected on the front panel. If so,
each bit in a byte will correspond to a single segment of the 7-segment display. Otherwise,
the lower 4-bits are converted into hexadecimal and displayed.

To be practically implementable in hardware, the video card does not directly display the
contents of data memory. Instead, it acts as a memory mapped I/O device that responds to
the first 8 bytes of memory. When a write memory occurs in one of those addresses, the
information is stored both in the video card and the data memory module. Due to this design
decision, the video card will only update the contents of a cell when a write operation occurs.

4.7.1.9 Control
The control lines throughout the computer are defined by the control logic seen in the picture
below. There are two main sections to the initial design of the i281, the decoder and the
control logic table. The decoder takes the 16-bit instruction line as an input and outputs logic
for which operation is going to be completed by the CPU. The control box sets the
corresponding control lines, for an operation, that are distributed to the rest of the CPU.

Figure 12 - Control Logic Blocks

The OpCode decoder, shown below, ensures that only one operation is active at a time. It
also shows the breakdown of each bit of the instruction line and how it is used in the
decoder. The most significant four bits are always used to define the operation, as seen with
the 4-to-16 decoder. In o-16 decoder. In addition, bits 9 and 8 are sometimes used to decode
the operation as seen in the three decoders to the right.

Figure 13 - OpCode Decoder Logic

The 23 operations bits and bits 11, 10, 9, and 8 are passed from the Opcode Decoder to the
control box to set each control line. The values of each control line is shown in the figure
below for each operation taking place. The way this implantation works in design 0 is using
gates to make a Boolean function.

Figure 14 - Control Lines Table

4.7.2 Design 1
Leading into designing a physical hardware implementation, several changes needed to be
made to the original design. Additionally, we developed a few standards for the project.
These standards will not be discussed in full here and instead can be viewed in Appendix A
(Standards).

4.7.2.1 BIOS
The BIOS, which is stored and runs from the ROM, will serve the function of clearing memory
and setting up the RAM chips for the user before running the main program. The BIOS will
need to run faster than the main code, as the length of BIOS’ execution would make waiting
for it too long for a normal user. The BIOS then must decide which program to fill the RAM
with, determined from the user’s input. After filling RAM and Data memory, the CPU will be
read for the program to run.

4.7.2.3 Code Memory
To avoid issues with needing to modify or load a program in the same chip as the BIOS, a
ROM and RAM chip will be distinguished. In addition to containing ROM and RAM, which
holds the BIOS, Code Memory handles all interactions with program loading and execution.
Instructions for running the user's program will be stored and executed from the RAM. This
will be filled in with the necessary instructions during boot. Either the RAM will be filled

from a storage chip on the device storing sample programs or filled using the switches
manually (via BIOS loader).

The size of both ROM and RAM has been extended compared to the FPGA design. Since the
code memory will not be implemented as a massive register file, the independent ROM and
RAM chips will allow storage far beyond the processor’s general capabilities.

Figure 15 - Code Memory Schematic

4.7.2.4 Register Files
The register file will be implemented using four 8-bit register chips that will be multiplexed
between two different sets of 4-1 multiplexer chips. Additional LEDs will be included
between registers and output to visualize what is stored and what has been produced as an
output.

Figure 16 - Register File Schematic

4.7.2.5 Arithmetic Logic Unit

Figure 17 - ALU Ports Labeled on Diagram

Design 1 of the ALU includes the first design of the ALU using 74 series chips and LEDs. The first
image shown below is of the 8-bit shifter circuit. It uses three SN74HCT257N chips which are
each four 2-input multiplexers. The first two on the left in the picture take the input from Port A.
The third multiplexer is where we determine where the shift out bit is determined. The output of
this circuit is Port C. We also have three filter capacitors to filter out noise.

Figure 18 - Initial Schematic Design of ALU 8-Bit Shifter

The Adder/Subtractor circuit design is created using three CD74HCT86E four 2-input XOR chips
and two CD74HCT283E 4-bit Full Adder chips. This circuit inputs the ALU_SELECT0 control line
along with Port A and B. From this circuit we output Port D, an overflow bit, and a carry bit. The
logic is the same as it was in Design 0, just with chips instead of conceptual design. We also have
5 filter capacitors tied to both +5V and GND to filter out noise.

Figure 19 - Initial Schematic Design of 8-Bit Addition/Subtraction Component Schematic

The last schematic includes the 8-bit 2-to-1 multiplexers (created out of two SN74HCT257N
chips) that Port C and D feed into and output Port E. Port E is also visualized with eight LEDs
accompanied by eight 330Ω resistors. Port E is also inputted into CD4078BE 8-bit NOR chip.
The output of the NOR is wired into the CD74HCT377E register file for the flags. We also
have another SN74HCT257N 4-bit 2-to-1 multiplexer circuit that takes the shift bit from the
shifter, the carry bit from the adder, and the overflow bit from the adder. The output of the
multiplexer goes straight into the register file for the flags. Lastly, the last bit in the Port E
bus is also tied to the flag register as the negative flag. All the flags are visualized using four
LEDs accompanied by four 330Ω resistors. The flag register output is labeled Port F. This
design includes five filter capacitors to reduce noise. Notice the order of the flags on Port F
as this will be changed in Design 2.

Figure 20 - ALU Flag Registers and Output MUX Schematic

4.7.2.6 Program Counter
The program counter was expanded to 8-bits instead of the original 6-bits as seen in the
i281 simulator. A major factor in these changes is the limited physical parts sold; the adder
and mux chips are 4 bits each. This allows us to expand to 8-bits without changing our
design and no real downside. Another benefit of increasing the bit size of the program
counter is we get more space to store and run programs from 2^6, 64 to 2^8, 256 lines. The
design greatly benefits from this change without making big sacrifices elsewhere.

Figure 21 - Program Counter schematic

4.7.2.7 Control Table
The control logic was changed to use EPROM to convert between the current operation and
the control lines. The schematic for the design can be seen below. This simplifies the number
of components in the design well, giving the same functionality. The EPROM is
programmable, allowing the ability to update the control logic later.

Since the CPU displays each control line's state at two locations, where it is generated and
used, we are using a buffer chip. Each chip should only drive one LED, so this buffer is
required to ensure proper voltage levels in the control lines.

Figure 22 - Control table schematic

4.7.3 Design 2
Certain components were iterated upon in this second design.

4.7.3.2 Code Memory
A visualization panel was added in extension to the component to showcase the current
instruction and program address.

4.7.3.4 Arithmetic Logic Unit
The image below is the Design 2 iteration of the ALU schematic. It is the combination of all
three of the schematics seen in Design 1. There are two major changes to the schematic. The
first one is the order of the output flags. The second is we made an error in calculating the
overflow bit, so we added an extra 4-bit Adder chip (CD74HCT283E). In addition to the two
changes, the ALU has been built on breadboards and works as expected. Another smaller
change to the schematic was that the control signals are now names the same as they will
be called from the control table.

Figure 23 - ALU Subcomponents Final Schematic

The output flags were rearranged to match the same layout as the simulator version of the
i281 CPU current supports. Bit 0 is now designated as the zero flag. Bit 1 is now designated
as the negative flag. Bit 2 did not change and is still the overflow flag. Bit 3 is now
designated as the carry flag.

Figure 24 - Output Flags on Schematic

In Design 1, the mistake we made for the overflow bit was we assumed that S7 was the bit
that would go into the XOR to create the overflow bit. This was incorrect as C7 is not S7. C7 is
also a bit internal to CD74HCT283E. There are multiple ways to imitate that bit. We had the
whole design already built on the breadboards and there wasn’t much space to implement a
large multi-chip solution. Instead, we realized we could use another adder chip, except this
one would take the same inputs as the second adder chip from Design 1. The only difference
is that we want to preserve the C7 so that it will output as the new C8 or Cout on the chip. In
order to do this, we just needed to use one of X7 or Y7 as a logic high and the other as a logic
low. This allows that carry bit to flow through. We are unsure if it is the most power efficient
method of implementation, but for the functionality, it works.

Figure 25 - Adder Circuit Zoomed in on Last Few Bits

The image below is the breadboard version of the design. Visually, we can see that there are
a lot of wires going all over the place. This design has so many components and it was very
difficult to layout. From the image, we can see Port A, B, E, and F. We can also see the flags,

control lines, and ALU output. The LEDs have the smallest bit on the right and greatest bit on
the left.

Figure 26 - Implementation of the ALU on Breadboards

4.7.4 Functionality
Describe how your design is intended to operate in its user and/or real-world context. This
description can be supplemented by a visual, such as a timeline, storyboard, or sketch.

How well does the current design satisfy functional and non-functional requirements?

4.7.5 Design Visual and Description

Figure 27 - Data memory modifications for physical hardware implementation

Figure 28 - Code memory discussion

4.8 Technology Considerations
For a successful breadboard project, it's crucial to ensure the compatibility of selected
components in terms of voltage, current, and signal requirements. Verify the stability and
sufficiency of the power supply to prevent issues related to voltage fluctuations or
inadequate current for the components. Pay close attention to signal integrity to avoid
interference, noise, or crosstalk that could impact the circuit's proper functioning. Select
appropriate documentation tools to maintain clear and comprehensive records for effective
collaboration and future reference. Consider the availability and functionality of testing
equipment, such as multimeters and oscilloscopes, for thorough testing and troubleshooting
during the design and implementation phases. Additionally, using KiCad, a free and
accessible design software, is advantageous for schematic and PCB design, though
addressing the learning curve for less experienced users is essential to optimize its usage
for the project.

4.9 Design Analysis
The initial design draft from Section 4.7 showed theoretical promise but required
adjustments for practical implementation. Not all elements from the simulator or FPGA
design could be directly translated into ICs. Due to the project's limited timeframe, we
streamlined the design for efficiency and ease of testing, focusing on chip efficiency. This
involved evaluating the balance between component complexity and functionality, ensuring
alignment with project objectives, and staying within scope and timeline constraints.

5. Testing
5.1 Unit Testing
The i281 project involves building several smaller sub-components that will eventually need
to interface and interoperate with one another. Instead of building all modules and then
testing them together as one system, we settled on a strategy of individually verifying the
functionality of each sub-component before attempting to connect them. This unit-testing
strategy is done in two stages.

First, the unit is tested electrically. There are many common mistakes that can be made
when wiring a solderless breadboard. Before power is applied to the module, the resistance
between the 5 volt and ground rails is checked to ensure that there are no short circuits. If
that test is successful, then the power pins on each integrated circuit will be checked to
confirm that they are on the correct power rail. By doing this, we can be confident that no
damage will come to the components when power is applied. Finally, once power is applied
to the breadboard the electrical characteristics are checked. If the voltage is found to be
sagging, too much current is being drawn, or if chips are getting hot, power will be removed
and the design to be reviewed for errors.

After electrical testing is complete, the sub-component is tested logically. To assist us in this
task, we built testing boards which allow us to run manual test cases for the modules. These
“testing rigs” consist of banks of switches and LEDs, so inputs and be manually set and
outputs and be visualized (See the image below). Using the switches, we can test how the
circuits react to changes in the switches. By doing this, we can test most, if not all, scenarios
that the circuit will go through.

Figure 29 - Testing Rig

Assuming all electrical and logical tests pass, the sub-component will be marked “OK” and
set aside for integration testing with other modules. By performing this process, we will have
some degree of confidence about the functionality of each module before attempting to
make them work together in a larger system.

5.2 Interface Testing
In the design of the original i281 processor, there are a few points where the user can
interact with the state of the machine:

• The “switch register”, which manually be set by changing a bank of 16 switches.
• The execution control section, where programs can be stopped, started, and stepped

through depending on the desires of the user.
• The “game mode” switch, which changes how the 7-segment displays format

information.

These interfaces are adequate for casual users running example programs for educational
purposes. However, we realized earlier on that we would need slightly more sophisticated
interface facilities for system and integration level testing. For that reason, we decided to
combine almost all user inputs, execution control, and debugging options into one module.
This module, known as the “user panel”, possesses all existing interface options plus a few
new features meant to assist in system debugging.

Figure 30 - User Panel Design

Component Type Description

Switch Register This is a set of 16 switches at the bottom
of the user panel. These switches are
further broken down into two banks of 8
switches. They exist as the main way
that user data can be inputted to the
processor. The switch register performs
different operations depending on the
instruction executing or debugging
operation selected.

Run / Halt Switch This is the first switch in the control
group. It allows the user to toggle
between automatic and manual
program execution. In the “Run” state,
the program counter will be
automatically incremented depending
on the configured speed of the system
clock. When the switch is moved to the
“Halt” state, execution will indefinably
pause. In this state, the user is free to
use any of the facilities in the debug
group. Moving the switch back into the
“Run” state will resume program
execution.

Game Mode Switch This is the second switch in the control
group. It controls how the first 8 bytes
of data memory are visualized on the 7-
segmenet displays of the video card.
When the switch is down, the contents
of memory will be displayed in
hexadecimal format. When the switch is
up, the bits of each byte will be mapped
directly to segment on the display.

Reset Switch This is the third and last switch in the
control group. It is used to reset the
processor state back to the boot state.
At this state, the processor can be
booted, or optionally debugging
operations can be executed. When the
processor is first powered on, the reset
switch must be used to put the
processor into a defined state.

Single Step Switch This is the first switch in the debug
group. When the processor is in a “Halt”
state, strobing this switch will send a
single clock cycle to the processor. This
can be used to manually step through a
program for debugging and educational
purposes.

Examine Switch This is the second switch in the debug
group. It is also the first switch that is
unique to the hardware implementation
of the i281 design. When the switch is
strobed, the contents of the lower 8 bits
of the switch register are added to the
program counter, and then incremented.
This value becomes the new program
counter. During this operation, the state
of the other processor components is
not affected.
Since the program counter and the
location in code memory that it points to
is always visualized, this allows for the
contents of code memory to be

manually checked without executing the
instructions stored.

Deposit Switch This is the third switch in the debug
group. Like the examine switch, it is
unique to the hardware implementation
of the i281 design. This switch is
designed to be used in conjunction with
the examine switch. When this switch is
strobed, the contents of the switch
register are placed in the memory
location pointed to by the program
counter. The program counter is then
incremented by one.
The purpose of this switch is to allow for
the manual programming of memory
without the assistance of the BIOS or
Boot Hard Disk.

Code / Data Switch This is the fourth and final switch in the
debug group. It controls if the deposit
switch enters data into code memory or
data memory.

Table 23 - Switch Types and Applications

In addition to the front panel, the clock speed can be controlled via the rotary encoder found
on the clock module. This can be used to dramatically slow down processor execution.

The main way that the user panel can perform these debugging operations is by “mocking”
instructions on the instruction bug. The “Examine” and “Deposit” switches work almost the
same as the “Single Step” switch, except for one key different. When these switches are
depressed, the code memory module will de-assert the bug, and allow the debugging board
to assert a single instruction instead. This instruction can be a JUMP, INPUTC, or INPUTD
depending on the desired operation. When the single step circuity first, this instruction will
be executed instead of an instruction from code memory. This allows for the debugging
features to be added to the user panel without incurring much hardware complexity costs.

Technically, the Boot Hard Disk (BHD) can be swapped out to provide different user/example
programs; however, this is not considered a traditional interface. To test the boot procedure,
we will be swapping programs on the BHD to confirm: instructions load into RAM, critical
control lines are solid, and operation after boot is as expected.

5.3 Integration Testing
What are the critical integration paths in your design? Justification for criticality may come
from your requirements. How will they be tested? Tools?

Due to the complexity of the i281 design, we figured that attempting to build the entire
processor and then debug it would be too difficult of a job. To streamline the integration
process, we decided to build and test a “minimum viable processor” before attempting to test
the entire system. This minimum viable processor, or MVP, consists of the bare minimum
required to test processor activity. The MVP consists of:

• The User Panel
• The Code Memory Module
• The Clock Circuit Module
• The Program Counter Module
• The Instruction Decoder Module
• The Register Module
• The ALU Module
• Various MUX Modules (Interconnection).

Importantly, the MVP explicitly excludes:

• The Data Memory Module
• The Video Card Module
• The Boot Hard Drive Module

By implementing a minimal processor, the critical path of the processor can be tested and
verified before more complex components are added.

After the minimum viable processor has been constructed and verified, the rest of the
system can be put together. This involves constructing and integrating the data memory,
video card, and boot hard drive modules. These are all complex pieces of hardware, so it is
important that the rest of the processor is known to be functional before debugging of those
modules begins.

5.4 System Testing
Each “island” of the i281 CPU needs to be tested independently to ensure the functionality of
each section. These will be tested for base functionality to prove they were properly built
and can interface with other sections of the CPU. Testing is completed using an existing
testing board capable of inputting two 8-bit numbers and outputting an 8-bit number; since
two of these boards exist, we can test up to four inputs and two outputs simultaneously. We
also use an Arduino microcontroller for testing purposes that creates a clock signal. This can

output a clock signal at any frequency required and a manual toggle clock; for testing, this
often kept a low frequency so that we can watch individual steps of the component to
ensure proper functionality.

When putting the different “islands” together, we will need to test the interconnects of each
component to ensure the sections are working as expected. Along with individual testing
when putting “islands” together, we will also need to test the overall operations of the CPU.
After connecting different components, these integration tests will be completed frequently,
whenever possible.

5.5 Regression Testing
We are ensuring that new additions do not break the old functionality by ensuring
compatibility between the new and old components before connecting and running them.
After they are connected, we can test the functionality of it via the 7-segment displays and
various other LEDs around the board. This is driven by requirements as one of the project's
goals is to have a class taught about and around the CPU. The students will then build and
test their designs with our CPU.

5.6 Acceptance Testing
The first form of acceptance test we must do is check the functionality of the individual
system modules. Each module has a set of requirements defined by our client. This outlines
what features the module should have, what parts of the module must be visualized, and
what implementation strategy should be used. We will check with our client during the
development and debugging process so ensure that each module meets their requirements.

After system integration is complete, acceptance testing is done by ensuring that the i281
CPU can fulfill all the requirements originally set out by our client. The main aspect of this is
that the system must be able to execute all existing i281 example programs with little to no
modification. If all example programs can be successfully executed, it is safe to say that the
processor is in an acceptable state.

5.7 Security Testing
Security is not a concern for this project. While we have made considerations about security,
none were implemented for the sake of project complexity and the lack of requirements.
Security features and further considerations will be a topic in the far future for students
examining the hardware implementation of i281 processor.

5.8 Results
We are testing the sections of the CPU as they are built to ensure they are functional. So far,
we have built and tested the 8-bit 2-1 mux, code memory, program counter, arithmetic logic
unit, register files, switch board, and control table circuits.

The 8-bit 2-1 mux were some of the first components we built for the i281 CPU. Since we had
no existing testing hardware, we had to make a new testing board capable of proving input
and output paths to the component. This testing board is used throughout the other
components to check functionality.

The 8-bit 2-1 mux was modeled after the picture below, taken from i281 class notes
explaining how the i281 CPU worked. We ensured each input bit mapped to the correct
output bit when that signal was active.

Figure 31 - 8-Bit 2-1 Multiplexer Design

When testing the program counter, we initially tried to use a switch as the clock pulse but
found this unusable without a denouncer. We used an Arduino as the clock for this sensitive
component to ensure our testing conditions would match the final usage. This will be used
as the clock in future testing as well. The picture above demonstrates the expected
functionality of the component. We started by only testing the program counter when c2 = 0,
increasing the stored number by one each time. This would help us narrow down problems
in the circuit before adding additional signal paths to the data path. After getting the main
wires of the output stage into the register correct, we added an offset to the program
counter ensuring that all functions worked as expected.

Figure 32 - Program Counter Design

Testing the code memory section was done in the same manner that all the other modules
were tested. The only difference is that two testing modules had to be used to accommodate
the number of inputs and outputs for the module. All of the features of the code memory
section were then manually checked out. This includes reading from RAM and ROM, writing
to RAM, and different bus arbitration states depending on the input address, program
counter, and control lines.

Figure 33 - Testing Rig Connected to the RAM and ROM

We tested the ALU in a very similar way. We used one of the testing rigs to hook up to the
ALU since they were designed to have two 8-bit input busses and one 8-bit output bus. The
ALU had three control signals, so we connected each of those two a switch. We also used the
Arduino Nano clock board to simulate the clock signal in the flag register chip. By changing
the values of C12 and C13, we were able to switch the mode the ALU was in. We exhaustively
tested each mode with multiple different potential inputs. To see if the design was working,

we looked at the output LEDs. Based on our inputs, we predicted the outputs and checked if
they matched the LEDs. For the addition and subtraction arithmetic, we used inputs from
Professor Stoytchev’s CPR E 281 class slides to verify our results. In addition to the outputs,
we used the slides to check if the Zero, Negative, Overflow, and Carry flags were triggered.
When we initially tested the design, we found a variety of errors such as an incorrect
orientation of the output LEDs, incorrect overflow errors, and issues with the shifter circuit.
These issues were then debugged, fixed, and some led to Design iteration two. After the
issues were addressed, the design was retested and passed.

6. Implementation
6.1 Implementation Plan
Next semester's implementation plan involves the finalization of our breadboard design,
which is currently in progress. Activities include the completion of outstanding tasks,
comprehensive design reviews, and addressing any identified issues for optimization. As we
work towards concluding the breadboard phase, our focus will transition to the preliminary
stages of the i281 CPU's PCB design. This transition includes developing an initial PCB layout
based on the breadboard design, gathering feedback for refinement, and identifying and
sourcing components for the upcoming manufacturing phase. Consultations with
experienced professionals will be sought to optimize the PCB layout, while simultaneously, a
comprehensive testing plan will be developed to ensure the functionality and quality of the
design. Throughout this process, we will continually assess and adjust the budget based on
refined estimates for PCB manufacturing and assembly.

6.2 Financial Spending
Throughout our first semester working on this project, we placed three-part orders and kept
track of our spending. The tables below outline the financial details for each order, providing
a transparent breakdown of costs, quantities, and sources for each electronic part.

Part Order #1

Part Name Quantity Price Per Unit Total Cost
Solderless Breadboard 50 2.95 147.5
Arduino Nano 1 14.7 14.7
8-Position DIP Switch 10 0.277 2.77
0.1uF Bypass Caps 100 0.028 2.8
Hex NOT Gates 10 0.55 5.5
Quad AND Gates 10 0.51 5.1
Quad OR Gates 10 0.51 5.1
Quad XOR Gates 10 0.77 7.7
Quad NAND Gates 10 0.55 5.5
Quad NOR Gates 10 0.55 5.5
Octal Latch + Enable 20 0.822 16.44
Quad 2-1 Mux 20 0.737 14.74
4-Bit Adders 10 0.864 8.64
10x 27C256 ROMs 1 9.95 9.95

Octal Bus Buffers 10 0.45 4.5
Grey Ribbon Cable 3 5.95 17.85
7-Segment Display 10 0.401 4.01
6 Color Wire (100 FT) [22] 1 39.95 39.95
LED Green 5mm >10 0.15 1.5

LED Red 5mm >10 0.12 1.2

LED Blue 5mm >10 0.17 1.7

LED Yellow 5mm >10 0.15 1.5

LED Orange 5mm >10 0.115 1.15

LED White 5mm >10 0.19 1.9
Table 24 - Part Order #1 parts and costs

Order Cost: $327.20

Part Order #2

Quantity Part Number
Manufacturer Part

Number Description Cost

1 B09136G5JL
Oumefarezyh3f70kw312-

01 EPROM Eraser 120-220V
27.69

25 38C9328 MCM 26-580
Round Paddle On-On

Toggle Switch
24.25

10 98K4970 1MS2T1B1M1QE
Round Paddle On-(On)

Toggle Switch
22.90

20 2267079 103-7014-EVX
Rocker Paddle On-On

Switch
7.80

10 2267039 103-7008-EVX
Rocker Paddle On-(On)

Switch
4.90

10 296-8406-5-ND SN74HCT257N Quad 2-1 Mux
7.37

5 296-1613-5-ND SN74HCT273N Octal Latch + Clear
4.45

60 42674 8200-16-R
DIP Package Cable

Connectors
53.4

1 36822 782201 GR005-JVP
22 AWG Green Wire 100

Feet 9.95

1 36768 782201 BL005-JVP
22 AWG Blue Wire 100

Feet 9.95

1 99363 ICS-01-R IC Pin Straightener
7.95

50 34761 LG3330 LED Green 5mm
7.50

50 333973 UT1871-81-M1-R LED Red 5mm
6.00

50 2234071 LL-50ABD2E-017 LED Blue 5mm
8.50

50 34825 LY3330 LED Yellow 5mm
7.50

50 2290247
C512A-WNN-B0-WM4-

28 LED Orange 5mm
9.50

1 643858 3365/16 100-JVP
16 Conductor Gray Flat

Ribbon Cable 100 Feet 44.95

100 690742 CF1/4W331JRC
Resistor Carbon Film 330

Ohm 1/4 Watt 5%
2.50

Table 25 - Part Order #2 parts and costs

Order Cost: $278.88

Part Order #3

Quantity Part Number Manufacturer Part Number Description Cost

5 296-1608-5-ND SN74HCT138N
3-8 Active-Low

Decoder/Demux 4.20

5 12950 CD4040BE
12-Stage Binary Ripple

Counter 3.45

5 27924 MXO45-3C-2M0000-JVP
2 MHz Full Can TTL Crystal

Oscillator 9.75

3 30AC8774 NR01105ANG13 Rotary Switch, 5 Position 17.01

1 -- -- Sheet Protector, 200 cnt 15.50

100 2267079 103-7014-EVX Rocker Paddle On-On Switch 25.00

25 2267039 103-7008-EVX
Rocker Paddle On-(On)

Switch 12.25

10 45022 74HCT244 Octal 3-State Buffer 3.90

7 595-CD4078BE CD4078BE 8-Input NOR 4.90

1 2257539 LRS-50-5 5V 10A Power Supply 13.50

1 102007 2381.12 10 Ft Power Cable 5.95

1 36768 782201 BL005-JVP 22 AWG Blue Wire 100 Feet 9.95

Table 26 - Part Order #3 parts and costs

Order Cost: $125.36

Total Spending: $731.44

These details give a straightforward view of how we spent our budget during the semester.
By tracking expenses for each part in a clear table, we've made it easy to manage our
budget and plan for future spending. This open approach helps us stay accountable and
makes it simpler to make well-informed decisions as we move into the next stages of our
project.

Our preliminary estimate for the PCB design of our breadboard computer project is around
$600. While this is a rough approximation, it encompasses factors such as design intricacies,
component costs, manufacturing, testing, and potential iterations. As we progress, we'll
refine this estimate through quotes from manufacturers. This initial projection provides a
baseline for financial planning as we move forward with the project.

7. Professionalism
This discussion is with respect to the paper titled “Contextualizing Professionalism in
Capstone Projects Using the IDEALS Professional Responsibility Assessment”.

7.1 Areas of Responsibility
Area of

responsibility Definition NSPE Canon IEEE Code of Ethics

Work
Competence

Perform work of high
quality, integrity,
timeliness, and
professional
competence

Perform services only
in areas of their
competence;
Avoid deceptive acts.

“uphold the highest
standards of integrity,
responsible behavior,
and ethical conduct in
professional activities”

Financial
Responsibility

Deliver products and
services of realizable
value and at reasonable
costs

Act for each employer
or client as faithful
agents or
trustees.

N/A

Communication
Honesty

Report work truthfully,
without deception, and
understandable to
stakeholders

Issue public
statements only in an
objective and
truthful manner; Avoid
deceptive acts.

Responsibility to disclose
dangers to the public and
to see honest criticism of
one’s own work.

Health, Safety,
Well-Being

Minimize risks to safety,
health, and well-being of
stakeholders

Hold paramount the
safety, health, and
welfare of the public

“to hold paramount the
safety, health, and
welfare of the public”

Property
Ownership

Respect property, ideas,
and information of
clients and others.

Act for each employer
or client as faithful
agents or
trustees.

“to avoid unlawful
conduct in professional
activities”

Sustainability
Protect environment and
natural resources locally
and globally.

 “to strive to comply with
[…] sustainable
development practices”

Social
Responsibility

Produce products and
services that benefit
society and communities.

Conduct themselves
honorably,
responsibly,
ethically, and lawfully
so as to enhance the
honor,
reputation, and
usefulness of the
profession.

“to improve the
understanding by
individuals and society
[…] emerging
technologies”

Table 27 - The seven areas of professional responsibility in the assessment instrument

Work Competence is important to any worker and most of IEEE’s first code of ethics applies
to different types of this. IEEE’s Code of Ethics does not give guidance about the finical
responsibly of engineering. NSPE does give guidance, saying being fair to all parties
involved. Both codes talk about honest communication with the public. IEEE also wants
engineers to be open to criticism when directly about them and their own work. They have
the same quote for health, safety, and well-being. Topics about property ownership is a bit
of a stretch for IEEE’s code of ethics, only a broad no illegal things applies. NSPE has the
same answer as financial responsibility. Whereas NSPE does not talk about sustainability,
IEEE ensure we strive for ethical designs and sustainable practices. When looking at the
social responsibility IEEE algins with the definition giving, to help make a better tomorrow.
NSPE’s answer is more about being a good person and engineer.

7.2 Project Specific Professional Responsibility Areas
Work Competence is among the most important areas of professional responsibility for out
project. We are constantly working on designing or building a component. These need to be
made well and correct in a timely manner so that we can use them in the final protypes. We
are constantly being counted on by other groupmates and must perform to our own
standards.

The areas of professional responsibility that are higher priority for this project include:
Financial Responsibility, Communication Honesty, and Health, Safety, Well-Being. These are
being throughout our project, and we should not take action to oppose them, but they are
not driving our project’s progress. For Financial Responsibility, we stay responsible for the
purchase order and only getting what we need to complete the requirements. The ultimate
goal of this project is to make a learn tool, so we need to ensure that the computer can be
used without anyone putting themselves in danger. We are trying to limit the risk of injuring
when using the computer.

Lower priority professional responsibilities include Property Ownership and Sustainability.
These are not very important for us. Since our design is made by our project professor we do
not need to worry about the ownership of that material. We are not purpose being wasteful
throughout this project and are practicing sustainable practices throughout the project.

This project in not a great step forward in society nor with it by used by and massive amount
of people outside of an academic environment. Therefore, Social Responsibility is not of
great importance throughout our project.

7.3 Most Applicable Professional Responsibility Area
Work Competence is the most applicable professional responsibility area to our
project, the i281 CPU.

8. Closing Material
8.1 Discussion
The primary outcomes of our project involve the successful assembly and initial testing of
the breadboard design. While we achieved the milestone of running a two-instruction
program, we encountered a challenge with our largest connector cable, resulting in two pins
touching. This issue affected the switch input and the functionality of specific instructions.
Despite these challenges, the project has provided valuable insights into the functionality
and potential improvements needed for the breadboard design. The next steps will involve
addressing these issues, refining the design, and proceeding with the PCB design phase to
enhance the overall performance and robustness of our i281 CPU project.

8.2 Conclusion
In our project's current phase, we have successfully undertaken most of the breadboard
design, achieving a significant milestone by running a two-instruction program. Our
overarching goal for this semester was twofold: first, to complete the breadboard design,
and second, to create a comprehensive design document outlining project requirements and
considerations for the subsequent implementation phase in the second semester.
Concurrently, we aimed to apply our newly acquired skills while refining existing ones
through the design process.

Our constraints for the project in our goals were our academic and external work. There
were technical hurdles with translating an FPGA design into a hardware implementation;
however, these were minimal and handled in a timely manner. Physically implementing the
prototype on breadboard took the most considerable amount of time out of the project.

Outside of having schedule changes and a better ethic toward the project management
style, the project operated smoother than expected and we will continue to strive for
improvements as our project evolves and concludes.

8.3 References
[1] “Ben Eater,” eater.net. https://eater.net/8bit/kits (accessed Dec. 03, 2023).

[2] "IEEE Standard Definitions of Terms for Electronic Digital Computers," in ANSI/IEEE Std
162-1963 , vol., no., pp.0_1-, 1963, doi: 10.1109/IEEESTD.1963.120147.

[3] "IEEE Standard for Electrical Characterization of Printed Circuit Board and Related
Interconnects at Frequencies up to 50 GHz," in IEEE Std 370-2020 , vol., no., pp.1-147, 8 Jan.
2021, doi: 10.1109/IEEESTD.2021.9316329.

[4] "IEEE Guide for the Characterization of the Effectiveness of Printed Circuit Board Level
Shielding," in IEEE Std 2716-2022 , vol., no., pp.1-46, 29 May 2023, doi:
10.1109/IEEESTD.2023.10136540.

[5] "IEEE Standard 696 Interface Devices," in ANSI/IEEE Std 696-1983 , vol., no., pp.1-40, 13
June 1983, doi: 10.1109/IEEESTD.1983.81971.

9. Appendix A
Project-Specific Standards

10.1 Design Definitions
In addition to all the terms and acronyms listed throughout the document, additional
definitions and concepts are left in the appendices for further reading.

Breadboards
A “breadboard island” is a CPU component that is completed on breadboard and is isolated
from other CPU components. The only way for logic/data to leave these boards is from bus
data lines.

Scoping
There are two types of “scope”: global and local.

Global scope, or globally scoped, mandates the requirements across all breadboards or PCBs
of a particular component, wire, etc. For example, if a wire is globally scoped, it should be
the only wire color used for a particular case in all scenarios regardless of breadboard or
PCB.

Local scope, or locally scoped, does not mandate adhesion to a particular requirement but
gives strong preference on to how it should be used in the project. For example, if a wire is
locally scoped, it should be left to the discretion of a board upon which usage it should fall
under. Once more, it is strongly recommended that the suggestions given be used unless
otherwise needed.

10.2 Wiring Standards
Wire Color Scheme
Through the usage of a 6-color wire spool set and two separate colors, the following wire
colors must generally represent the appropriate usage on a breadboard.

Black
Purpose: ground (GND)
Scope: global

Standard color choice. Black is specifically reserved
for ground only. This should be used for jumpers to
the ground line in a breadboard or across breadboards.

Red
Purpose: +5V power line
Scope: global

Standard color choice. Red is specifically reserved for
power (+5V) only. This should be used for jumpers to
the power line in a breadboard or across breadboards.

Blue
Purpose: data line, primary
Scope: global

In all other cases where information being transferred
across a component isn’t an address or control line, the
line is considered data.

Green
Purpose: address line
Scope: global

Processor addresses will be illustrated as green wires
when known. When uncertain, use appropriate
alternate color (data line(s)).

Yellow
Purpose: control line, clock pulse
Scope: global

Control line jumpers are indicated using yellow. A
separate cable may be used to carry more than one
line but must be indicated as such.

White
Purpose: data line, secondary
Scope: local

In cases where a significant number of blue wires
would be used for data, white wire may be used to
help alleviate eye strain.

Orange
Purpose: data line, ternary
Scope: local

Typically used as a data line in the Register File, the
wire may be used for the clock line in debugging to
differentiate between control lines.

Purple
Purpose: data line, ternary
Scope: local

Typically used as a data line in the Register File, the
wire may be used for control lines in debugging.

Gray Ribbon Cable
Purpose: bus data line
Scope: global
Data transfer between breadboard islands. Measure
between islands and cut with reasonable slack.

Connector for Bus Data Lines

Pin Description
D0-D7 Data lines 0-7
GND Ground

The primary indicator for the connector is that the zeroth bit line (non-gray wire) must be on
the right side of the connector when facing the i281 processor.

10.3 Visualization Standards
An initial 6 colors were purchased for the i281 CPU. Colors are not as restrictive as wires;
however, there are some reserved colors.

Orange
Purpose: register storage
Scope: global

Meant to exclusively be used for representing what is
currently stored in the individual registers of the
Register File.

Red
Purpose: instruction representation
Scope: local

Blue
Purpose: open
Scope: local

Green
Purpose: program address
Scope: global

Green is the representation of the program address
across all CPU components.

Yellow
Purpose: control line indicator
Scope: global

A yellow LED is meant to indicate the assertion of a
control line at both the source (instruction decoder)
and destination (multiplexer, ALU, etc.)

White
Purpose: flags register
Scope: local

10. Appendix B
Team Contract

Team Name _i281 CPU Hardware Implementation______

Team Members:

1) _Logan Lee_____________________ 2) _Braxton Rokos_________________

3) _Brandt Daryl Damman___________ 4) _Grant Nordling__________________

5) _Gavin Tersteeg_________________

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:

Team meetings will be held every Wednesday night from 5:30pm until 6pm. These
meetings will precede the meeting with the client, Dr. Alex Stoytchev, from 6pm to
7pm.

Team and client meetings are to be held face-to-face unless a popularity of members
is unwell or unable to physically meet. In this scenario, an attempt to meet virtually
will be made. Additional meetings may be scheduled on other days and times when
the project requires such.

Work meetings between a portion of the team will be scheduled on a needed basis to
ensure physical hardware work is performed. Work will be performed in the Senior
Design lab in these scenarios.

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g., e-
mail, phone, app, face-to-face):

Texting, Discord, and Email. Texting is reserved for timely communication. The Discord
app is for all relevant and non-relevant information about the project. Email will be
used for discussions that need to be well-documented and client interactions.

Gitlab will also be used for issues, reminders, and project updates related to issues.

3. Decision-making policy (e.g., consensus, majority vote):

For most decisions, a group consensus must be held to pass a decision. For
controversial or long decisions, popularity must be met to pass a decision.

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):

During client meetings, Daryl Damman will record information regarding interchanges
between client and team. These notes will be stored on the team’s Gitlab instance for
version controlling and easy accessibility.

For other meetings, all other members will volunteer on a meeting basis to document
information related to project advancement, discourse, and other relevant
information. This information will be stored in Gitlab.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:

All meetings between the client or separately as a team require full attendance.
Absences from these meetings are permitted with a notice from each respective
absent member with a sound reason.

Work outside of meetings does not always require the full team unless directed and
agreed upon by all members.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

Unless noted in advance, where possible, all members are expected to deliver and
demonstrate on their respective timelines, deadlines, and assignments promptly.

Failure to meet deadlines will result in team discussion to resolve the work that has
fallen behind. Continued failure to meet the deadlines set will result in an infraction
of the contract.

3. Expected level of communication with other team members:

Team members are expected to monitor communications channels regularly.
Members should promptly respond to any questions or inquiries. Additionally, the
group should meet in person or virtually at least once a week to share progress and
make plans for future work.

Not meeting during a week (as a team, not with the client) must be agreed upon by
the full team in writing via text or email.

Client meetings are to be weekly or bi-monthly unless otherwise agreed upon by the
whole team and client.

4. Expected level of commitment to team decisions and tasks:

Team members are expected to dedicate ample time to accomplish the weekly or
monthly milestones. Team members are also expected to communicate in team
decisions and share any concerns or answer any questions.

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):

• Daryl Damman has taken the role of organizing the team, contacting the client (Dr.
Stoytchev).

• Logan Lee has taken the role of monitoring scheduling for all meetings and
overall testing procedures.

• Grant Nordling has taken the role of client interaction, testing, project assembly,
and quality control for circuits and PCB design.

• Braxton Rokos has taken the role of testing, breadboarding, PCB design, and PCB
routing.

• Gavin Tersteeg has taken the role of testing and quality control for digital logic.

Responsibilities regarding the project components will be divided on a milestone
basis as the project progresses.

2. Strategies for supporting and guiding the work of all team members:

Gratitude toward each team member for all accomplishments and achievements. As
noted in an earlier section, issues and milestones will be used to track required
project work. From those same issues and milestones, members are expected to aid
each other, when possible, to support each other.

3. Strategies for recognizing the contributions of all team members:

Messages in phone texting will be seen by all members to highlight their specific
achievement. Emails with the client and/or professor may include notable remarks
for one or more members between milestones.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the
team.

• Daryl Damman has experience in project management, software development,
and assembly architecture. Some mild experience in firmware development.

• Logan Lee has experience in designing circuits, building circuits, and experience
with simulating digital logic.

• Grant Nordling has experience in PCB testing, ordering parts, chip testing, and
enclosure wiring and design;

• Braxton Rokos has experience in circuit design, PCB testing and layouts, cable
design and creation, soldering, and running simulations.

• Gavin Tersteeg has experience in PCB layouts, digital logic design, and homebrew
computer design.

2. Strategies for encouraging and support contributions and ideas from all team members:

Ensuring we acknowledge all ideas brought up by team members will ensure a
positive environment to continue contributing to the team. We will ask for feedback
from other team members to ensure everyone voices their ideas.

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a
team member inform the team that the team environment is obstructing their
opportunity or ability to contribute?)

Communication is a major factor of identification and resolution. If there are issues
with involvement, all team members must do their part to reduce the barrier of entry
or eliminate obstacles.

A team member who is experiencing issues with the team environment and
complications with their ability to contribute should state their concerns via text
message or Discord message to the whole team. If a scenario arises where the team
member is not comfortable bringing up the problem to the whole team, they must
notify two other members of the team to discuss their concerns. The three members
involved will then bring forth the concern together.

In extraordinary circumstances where a member is not comfortable with discussing
the concern with any other member on the team for any sound reason, they must
contact the TA (Abir Mojumder) for guidance on going forward.

Goal setting, Planning, and Execution

1. Team goals for this semester:
1. Creating a fully flushed out design document that will thoroughly denote project

requirements and considerations for full implementation during the second
semester.

2. Apply newly acquired skills through the project design and honing old skills.

2. Strategies for planning and assigning individual and teamwork:

We are going to use GitLab to keep track of work done and documentation. We will
have a list of milestones and tasks that we can all work towards together when
available. We will set some deadlines to keep the project on track. Team members will
assign their own work to work towards our milestones.

3. Strategies for keeping on task:

Weekly objectives with long term goals to ensure we know what we are working on.
Milestones will be installed by the team organizer to ensure longer term goals.

Progress on the physical hardware project should be shared with the whole team,
especially if not all members are present, to boost morale and display the
achievements the team as a whole is making.

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

Team members that violate the contract in part or whole will be subject to discussion
from all team members and follow-up with the client, if necessary. The severity of the
infraction is to be determined by all members that have not violated the contract. If
the infraction is determined to be minor and should be instead considered an honest
mistake, the infraction is to be nullified upon discussion amongst members.

2. What will your team do if the infractions continue?

Further discussions with the client and team members alike to understand the source
of infractions of a specific member will be held. A resolution must be made with the
team member who is violating the contract to avoid extraordinary circumstances.

In extraordinary circumstances, the professor will be involved to mitigate further
infractions and discuss the future project involvement of a team member.

a) I participated in formulating the standards, roles, and procedures as stated in this
contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) ___Logan Lee_____________________________________ DATE ___9/10/23__________

2) ___Braxton Rokos_________________________________ DATE ___9/10/23__________

3) ___Grant Nordling_________________________________ DATE ___9/10/23__________

4) ___Brandt Daryl Damman___________________________ DATE ___9/10/23__________

5) ___Gavin Tersteeg_________________________________ DATE ___9/10/23__________

